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DIAGNOSTIC INFERENCE: PEOPLE'S USE OF INFORMATION IN INCOMPLETE
BAYESIAN WORD PROBLEMS

1. Introduction
It is possible to measure the extent to which one believes a proposition. Probability is a

recommended measure, both because most people are familiar with it, and because it has some
very convenient mathematical features (Krantz, Luce, Suppes, and Tversky, 1971). For example, i4
one believes proposition H with probability p(H), one should believe the contradiction of H with
probability 1 - p(H) (complementarity); and it one already has a degree of belief p(H) in proposition
H, and one is given new evidence E pertinent to the truth of H, one can use a specific formula
(Bayes' Theorem) to adjust one's degree of belief in H to a new p(H/E). If people would use
probabilities correctly to measure their degrees of belief, they could communicate their uncertainties
accurately (see Wallsten, Budescu, Rapoport, Zwick, and Forsyth, 1986) and they could consider
the expected utilities of their decision options (Edwards, 1961).

Research has shown, however, that people's subjective probabilities are not precise (Slovic,
Fischhoff, and Lichtenstein, 1977), even with some training (Lichtenstein and Fischhoff, 1980) For
example, with word problems that present information pertinent to the establishment and
subsequent revision of the degree of belief in a hypothesis, people do not use the information
properly (Fischhoff and Bar-Hillel, 1984; Kahneman and Tversky, 1972; Tversky and Kahneman,
1982.). Typically, they neglect the information pertinent to the establishment of the belief.

The present study uses a new method to study changes in the subjects' degree of belief in the
hypothesis while reading and answering a probabilistic inference word problem. Instead of
presenting the information in one standard order (first the base rate information which estaolishes
the probability of the hypothesis, then the evidence pertaining to the hypothesis, and finally the
reliability of that evidence) and then asking for the subject's final degree of belief in the hypothesis,
this method presents the information in each possible order (to different subjects) and asks for the
degree of belief before and after each piece of information. This design allows
1. the investigation of people's probabilistic inferences in situations which have norms other

than Bayes' Theorem,

2. the testing of a number of hypotheses concerning the process by which people produce
and change their probabilistic degree of belief in a hypothesis, during word problems.

2. Previous research on probabilistic inference word problems.
A probabilistic inference word problem is a word problem that presents a situation and gives

information relevant to the reader's degree of belief in various propositions. The information is
presented either as observations (evidence), as numerical probabilities, as relative freqijencies, or
as verbal expressions of prohability. The subject is asked the probability cf a proposition about the
problem situation. Subjects' behavior is described and compared with the normative use of the
information to answer the question. The norm we are primarily concerned with here, Bayes'
Theorem, can be applied when one has a degree of belief in a hypothesis, p(H) (the "prior
probability*), one knows the probability of observing a particular piece of evidence if the hypothesis
is true, p(EIH), and also if the hypothesis is false, p(E/-H) (the "conditional probabilities"), and one
observes evidence E. In word problems with this information, p(H) should be rc Ise a "posterior
probability", p(H/E), according to the following ruie:

p(H/E) - p(E/H)xp(H
p(E/H1)xp(ff) + p(E/-f/xp(-f)

The first wave of research on how people do word problems where Bayes' Theorem is the norm
was the "book bag and poker chip" paradigm (see Edwards, 1968; Slovic and Lichtenstein, 1971).
The typical word problem is given in Table 1. These problems were often encountered in a
laboratory, where the evidence was an event that happened 'in the present" rather than being read
about; thus it was a particularly vivid 'word problem". Subjects usually answered a number of
questions about each word problem, following the presentation of new information. Usually a
number of chips would be drawn, and the subject would report the probability that it was the
predominantly red bag after each drawing. The subjects were given the following sequence of
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information in this problem: (a) p(E/H) - .7 and p(EI-H) = .3; (b) p(H) = .5; (c) a series of pieces of
evidence, each either E or -E. They answered p(H/all E so far presented) after each E. [Recent
examples, such as Lopes (1982) and Robinson and Hastie (1985), have presented a series of
pieces of evidence E, about which the reliability p(E/H) was not uniform for all i, and was not given
explicitly.]

Insert Table 1 about here.
................. o t........

A common finding in these studies is "conservatism*, that subjects did not adjust their degree of
belief in H as far as Bayes' Theorem would prescribe. This was ascribed both to their failure to
appreciate how rare it would be to draw a particular combination of chips from one of the bags
(*misperception'), and to their failure to combine the information properly ("misaggregation') (see
Edwaras, 1968).

The second wave of research (see Fischhoff and Bar-Hillel, 1984; Tversky and Kahneman,
1982) used word problems like the Cab problem (see Table 2). This research commonly used
questionnaire studies in which the subject answered only one problem of this type. Here the
problem indicates that the prior probability p(H) is rnuch less than .5. The prior probability is not
stated directly, but rather a relative frequency or base rate is given, which the subject must
recognize to be an estimate of the prior probability, There is only one piece of evidence, which
favors the unlikely hypothesis H. The sequence of information a subject encounters in the Cab
problem is: (a) p(H) is .15; (b) E (favoring H) was observed; (c) p(E/H) = .8 and p(EJ-H) = .2. The
subject answers p(H/E) after reading all this information,

Insert Table 2 about here.

The typical finding with the Cab problem and its variants is that the p(H) information is ignored
or insufficiently attended, when compared with the Bayes' Theorem prescription. Hence, the
evidence is given too much weight, the opposite of the conservatism found with the Bookbag
problem (Bar-Hillel, 1980). It should be noted, however, that in problems of the Cab type only one
piece of evidence is given, and a similar nonconservatism had been witnessed with Bookbag
problems following the first piece evidence in the series (Peierson and Miller, 1965; see Slovic and
Lichtenstein, 1971, p 697). Additionally, the p(H) of .5 used with the Bookbag problem is almost
.null" information (i.e., it is identical to the assumption subjects make if no p(H) is given). Some first
wave researchers gave subjects p(H) values other than .5, and found an underutilization of this
information (Slovic and Lichtenstein, 1971, p 703). Despite these links between the research
findings using the two word problems, the behavior observd on the Cab problem has been seen as
an instance of a different phenomenon, the "neglect of the base rate" (T'.,orsky and Kahneman,
1982), which is also observed with word problems that give multiple, non-independent pieces of
evidence (Kahneman and Tversky, 1973; Borgida and Brekke, 1981).

Research with variants of the Cab problem has explored the generality of the neglect of the
base rate. For example, Cascells, Schoenberger, and Grayboys (1978) and Eddy (1982) observed
it with doctors answering realistic medical word problems. A second approaci to generalization has
been to seek to influence the subjects' utilization of the prior probability information by either (a)
varying the wording of the information pertinent to p(H), to see it subjects will then be more likely to
use it (e.g., Bar-Hillel, 1980; Tversky and Kahneman, 1980), or (b) instructing subjects to pay
attention to the base rate (e.g., Fischhoff, Slovic, and Lichtenstein, 1979; Fischhoff and Bar-Hillel,
1984; Lichtenstein and MacGregor, 1984). A general principle explaining variations in subjects' use
of the base rate information has been offered by Bar-Hillel (1980, p 230). "People integrate two
items of infurmation only if both seem to them equally relevant.... One item of information is more
relevant ... than another it it somehow pertains to i more specifically."

This principle explains a number of the experimental findings, including extreme cases such as

2
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Table 1. Book Bag and Poker Chip problem

There are two bookbags filled with poker chips. One contains 70% red poker chips and 30%
blue chips, the other contains 30% red and 70% blue chips [p(EJH), p(E/-H), pt-E/H), and
p(-El-H].

One will be picked at random [p(H) = .5], and your job will be to guess whether it was the
predominantly red or the predominantly blue bag.

A red chip is drawn from the bag [the evidence, El.

What is the probability that it was the predominantly red bookbag [p(H/E)]?

(adapted from Slovic and Lichtenstein, 1971, p 668.)

Table 2. The Cab Problem.

In this city there are only two cab companies, the Blue Cab Company and the Green Cab
Company. The Green Cab Company is larger, with 85% of the cabs in the city. [p(H)J

There was a fatal hit and run accident at night. Although the viewing conditions were poor. the
only witness identified the cab as blue. [evidence]

The police tested the reliability of the witness under the same circumstances that existed on the
night of the accident and concluded that the witness could correctly identify cabs of cach one of the
two colors 80% of the time and misidentified them 20% of the time. [p(E --I) and p(E/-H)]

What is the probability that it was a Blue Cab? __

(Adapted from Tversky and Kahneman, 1982, p 156)

3
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the presentation of only the base rate (the only information available, it is used: Tversky and
Kahneman, 1982), and the presentation of no base rate information (subjects do not notice it is
missing; Hammerton, 1973). The principle also covers the findings of studies that present subjects
with a series of word problems over which the base rate information is varied (Birnbaum and
Mellers, 1978; Fischhoff, Slovic, and Lichtenstein, 1979; see also Christensen-Szalanski and
Bushyhead, 1981). Subjects respond to variations in the base rate, even if it is in fact irrelevant to
the question (Fischhoff and Bar-Hillel, 1984; Fischhoff, Slovic, and Lichtenstein, 1979). The
relevance principle accounts for this if we assume that the variation in the base rate between
problems makes the subject think it is pertinent to the problems.

The relevance principle has been well received (von Winterfeldt and Edwards, 1986). It can give
heuristic guidance in our attempts to change word problems, as well as real life probabilistic
inference situations, so that people will use base rate information. However, it verges on tautology
(defining "relevance" in terms of what makes people use base rate information on word problems).
A more specific definition of psychological "relevance, and its determinants and consequences, is
needed. Background for this sharper definition can be provided by a more detailed description of
the processes by which people produce answers to word problems, which is the aim of the present
study.

2.1. People's strategies for solving probabilistic Inference word problems.
In previous researcf there has not been enough variation in the word problems to allow

,eseaahers to tease out the processes people use to answer the questions. First, only fairly difficult
probabilistic inference problems (those for which Bayes' Theorem provides the right answer) have
been studied, so we know little about whether people are able to make simpler inferences, or how
they might do so. Second, while the Cab problem has three key pieces of information (see below.
subjects have given their answer only after getting all three pieces, and so it is not known how each
piece is used individually, how they are used in combination, nor whether there are any effects of
the order of presentation.

The present study, which uses the standard Cab problem .nd two variants, identifies the three
key pieces of information in each problem and presents them separately. Thus, the base rate or
prior probability information, the evidence, and the reliability of the evidence ae presented one at a
time, in each of the six possible orders (for different subjects), and the subjects are asked for p(H)
[or, if E has already been given, for p(H/E)] both before any information is given and after each
piece. This allows us to
1. study the subjects' use of evidence and reliability information, in addition to base rate

information;

2. compare subjects' performance with the norm, in a number of situations that have not
previously been studied;

3 determine whether the order of reading the information influences the answer.

The method has been partially anticipated. Tversky and Kahneman (1982) review a study in
which only the base rate information was given. They found that it was used (see also Locksley and
Stangor, 1984). The present study extends this by giving the reliability alone, and the evidence
alone. Fischhoff and Bar-Hillel (1984) required subjects to think about the problem using "Isolation
Analysis", in which the subjects were presented with the full Cab problem and then asked:

1. 'If you only knew the proportion of Green cabs in the city, what would you think is the
probability that the cab was Green?"

2. "if you only knew the witness' reliability, what would you think is the probability that the
cab was Green, as the witness claimed?"

These questions are analogous to (1) asking p(H) after only the base rate information is presented.
and (2) asking p(H/E) after only the evidence and reliability are given. The present technique is
better for our purposes because it is direct, while Isolation Analysis (which was intended as a
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focusing technique) gives people information and then asks them to pretend that they do not have .1
while they inswer a question, a procedure subject to hindsight bias (Fischhoff, 1975).

The study seeks a general account of how people answer probabilistic inference word
problems. Their task is viewed as the production of a judgment from a variable number of inputs.
Will it be possible to find an explanation of subjects' answers at every step of the problem, that also
explains how people do the final step, the Bayesian inference problem that has been studied
before?

The study also seeks a general description of people's accuracy in using probabilities to
measure their degree of belief (in comparison with the norms of probability theory) on ail the
subproblems encountered in the present method. Each subproblem has either a normative answer,
or a range of normatively acceptable answers. Will it be possible to find a general account of
subjects' accuracy on these problems, that also accounts for how well they do on the Bayes'
Theorem problems?

2.2. The psychological process: Hypotheses about the subjects' strategies.
The strategy of this study is to use the data to eliminate or support hypotheses about the

processes by which people produce their answers to probabilistic inference word problems. The
fol!owing hypotheses are listed in approximate order of increasing sophistication and understandng
involved in the process.
1. Non-normative Integration of available numerical Information. People answer word

problems by mentally combining the numerical information in some manner, without
necessarily using the probabilities qua probabilities. The terms of Bar-Hillel's (1980)
relevance hypothesis (quoted above) suggest this form of model (see also Einhorn,
1985).

a. Using one available number. The subject may respond with one of the numbers
presented explicitly or implicitly in the word problem. The selection of the number may
not be guided by the meanings of the probability numbers; it may be random (Hamm,
1987).

b. Simple mathematical operations. The subject may apply simple mathematical
operations to the numbers in the word problem, such as complementation. addition,
subtraction, multiplication, division, or combinations of these. For example. Kahneman
and Tversky (1972, p 448) found that subjects in a variant of the book bag and poker
chip word problem frequently used the sample ratio (the proportion of red chips in the
sample) as an estimate o the probability that the "predominantly red bag" was the
source.

c. Complex mathematical operations. The subject may use more complicated
operations. Krantz and Tversky ,971) list a number of possible combinations of three
input variables A, P, and U: (A + P)*U, A*U + P, and A*P*U (and permutations).
Variations of Bayes' formula provide another set of possibilities: (A*P)/(A*P + (1-A1*(1-
P)).

d. Use of conventional probabilities. The subject may use common landmarks on the
probability line -- thirds, fourths, fifths, tenths -- either to express a global evaluative
judgment, a simultaneous weighted average, or a sequential anchoring and
adjustment process (see for example Kahneman and Tversky, 1972, p 447).

e. Weighted average of Information. The subject may integrate the available
numerical information using some form of weighted average. Averaging is a common
form of information integration (Anderson, 1981; Dawes, 1979; Hammond, Hamm,
Grassia, and Pearson, in press) and has been suggested as an explanation of
people's behavior in the Bookbag problems (Marks and Clarkson, 1972; Shanteau,
1972). This integration process is assumed to be applied universally; that is, the same
relative weights are applied to any two pieces of available information, no matter

,I, mi mw mmm m wn -I
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whether other information is present. Various! weightea averaging theories may be
distinguished by the relative weights put on information.

i. Sequence-dependent information weighting pattern. , ne weight the subject
puts on information may be determined by the ordinal position in which the
information was receivoo.
1. Anchoring and ldjustment. or updating: The subject may anchor on early

information, adjus: inadequately for la,. r information. Tversky and Kahneman
(1974) demonstrated the common use of this strategy in a task where
information was presented simultaneously and subjects anchored oi what
they read first. Einhorn and Hogarth (198.), Lopes (1982), Lovie (1985),
McClelland, Schulze, and Coursey (1986), and Robinson and Hastie (1985)
have found that anchoring and adjustment is a useful explanation for how
people mat-a diagnostic inferences. In the present task, information is
presented sequentially. Two strategies are possible:

a. Anchor on Initial Information: Subject would remember and anchor on
the rst piece of information giv,,n, and adjust it, taking acxunt of all
suLsequent information, each t.,ne new information is received.

b. Updating. Anchor on most recent answer: Subject would remember
and anchor on the previous answer and adjust it taking accou.,t of the
currently presented information (see Gettys, Kelly, and Peterson, .973, for
a similar theory applied to t: a Bookbag problem; see Einhom and
Hogarth, 1985). (Note that the result o' using this strategy will not
necessarily be a universal weighting.)

2 Primacy: The first information presented will receive the greatest weight, and
less for each subsequent piece of information I his would be expected, for
example, with a strategy of anchoring and insufficient &djustment. Peterson
and Ducharme (1967) found primacy in the Bookbag problem, with the
sequence of pieces of evidence E1 ,.... En.

3. Recency: Most weight will be put on the most recent information. Pitz and
Geller (1970) found such a pattern with the Bookbag proble n.

It should be noted that some studies have found no effect of the order of
information presentation (e.g., Ricchiute, 1985).

ii Content-dependent Information weighting patterns. The s, bject may use a
weighted averaging process, assigning weight according to t'e kind of
information.

1. Most weight on evidence.

2. Most weight on b.se rate.

3. Most weight on rehablilty.

4. Response mode (-r ipatiblllty. The subject's weighting of the information in
the problem may depend on t- response mode (see Lichtenstein and Stovic,
1971). Thus, Wyer (1976) proposed the following model:

p(H/E) = kl*p(H) + k2*p(EH) - k3°p(EI-H)

where k2 > k3 > ki.In judging p(H/E), the base rate would get the least weight
and p(E/H) would be weighted most because it is most similar to p(H/E) (see
also Nisbett, Krantz, Jepson, and Kunda, 1983).

f Other composition principles. The complex arithmetic operations of Krantz and
Tversky (1971; .ee Hypothesis 1-c above) were proposed as possible psychological
composition principios, more complicated than averaging or multiplying organizing
principles
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2. Heuristic strategies. People adopt strategies that simplit1 the probabilistic iference
problem, yet embody a limited appreciation of the meaning of probability. The motivation
for the simplification is that it is too difficult to use the probabilities in the normatively
correct manner (Tvers-, and Kai neman, 1974).

a. Simplification by the universal neglect of base rate Subjects are capable of using
iost probabilistic information, but they simplify by ignonng base rate information. In
particular, thcy treat the problem as if the base rate = .5, by the principle of insufficient
reason.

b Simplification by the neglect of selected Information People are capable of using
any prnbabilistic information, if there is not so much of it that it overwhelms them. !n
those situations where there is more information than they know what to do with, they
selectively ignore some of it.

i. Selective Ignoring of base rate. in those situations where there is base rate
info. mation and unreliable evidence, subjects simplify the problem by ignoring the
base rate.

ii. Selective Ignoring of other pieces of Information. Subjecs may, for e ample.
ignore the evidence (aiswering with the prior probability), or ignore the
unreliability of the evidence (hence, accepting the evidence fuly)

iii. Confusion between p(EH) and vn(H/E). When asked for p(H!E), subjects may
give p(E/HI thinking it is exacily the appropriate answer. Eddy (1982, p 254)
suggests this explanation: "... the erring physicians usually repor, that tViey
assumed that the probability of cancer given that the patient has a positive X-ray
[P(ca/ros)] was approximately equal to the probability of a positive X-ray in a
patient with cancer [P(pos/ca)]. The latter probability is the one measured i0
clinical research programs and is very familiar, but it is the tc mer probaoility that
is needed for clinical decision making. It seems that many if not most physicians
confuse the two." Wyer (1976) anJ Day.ws (1986) pro,,ide additional examples.

c. Selection of strategies from a repertoire. In Hypotheses 2-a and 2-b, simplification
is viewed as the neglect of selected information, either universally or in paricular
information overload contexts. Another view is that simplification is produced through
the selection of specific strategies in specific situations; "neglect" is simply a side
effect. By this view, people have a 'ollection of heuristic strategies, and their selection
of a heuristic to use in a situation is guided by an urderstanding of the meaning of the
situation (see Bursztajn and Hamm, 1982; Christersen-Szalanski, 1978, 1980). This
hypothesis would say, for example, that people understand the mnening of the
probabilistic information in tl!e word problem, and choose relevant heuristic strategies
that often produce correct a ,swers, though they are not icenticai with the normative
probabilistic treatment of the problem.

3. Normative probabilistic reasoning. The processes people use map onto the processe-
of probobility theory.

a. Suojective probabilities. People reason in accord with the normative probability
model: any inaccuracy ;n their answers is due 'o their consistent use of subjective
probabilities, as in Su',lective Expected Utility Theory (Edwards, 1961) or Prospect
Theory (Kahneman and TverskV, 1979). That is, they periorm the kind of
ma- ipulations required by the normative model, except that their conceptions of the
probabilities may be slightly distorted.

b Subjectve probabilities combined with principled rejection of base rate
Information. People reason in accord with the nomiative probability theory, as
above, with the exception tha'.vhen given base rate information they may consider it
to be irrelevant. Specifically, they do not use the base rate information as a prior in the
applicatfon of Bayes' Theorem. The rejection of the base rate information s based on
normative principles. For example, with the Cab problem, people may consider that in
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a court one is innocent until proven guilty, and hence statistical evidence about the
relative frequency of Blue cabs in the city is not pertinent to the probability of a Blue
cab's involvement in the accident (Cohen, 1981); the appropriate prior probability
might then be p(H) - .5, in which case the Bayes' Theorem answer for p(H,'E) equals
p(F'H) (Niiniluoto, 1981).

3. Methods.
Subjects were 265 undergraduate students, 131 mates, who participated for course credit in

groups of from 15 to 40 subjects. They individually completed a questionnaire with 7 word
problems, at their own pace. It was explained that although they probably had riot been explicitly
trained in the methods for solving these problems, there are indeed correct answers. Subjects were
exhorted to pay serious attention to the problems, and were promised that their answers would be
scored and the scores posted publicly.

Three of the seven problems were probabilistic inference word problems, occupying positions 3,
5, and 7 in the questionnaire. The four filler problems required the estimation or calculation of
numencal quantities. Most of the problems presented several paragraphs of information, and asked
questions after each paragraph. Subjects were instructed to cover each page with a sheet of paper
and slide it down to expose only one paragraph at a time. They were explicitly permitted to refer
back to earlier paragraphs at any time.

The probabilistic inference word problems are the Cab problem used in previous research
(Table 3). the Doctor problem (estimate the probability that a patient has a particular disease. Table
4), and the Twins problem (estimate the probability that a particular twin boy broke a lamp; Table 5).
Each problem was divided into four paragraphs, containing the introduction, the base rate
intormation p(H), the evidence, and the reliability of the evidence p(EJH) and p(-E/-H). The subject
was asked for the probability of the hypothesis (e.g., that the cab involved in the accident was a
Blue cab) and its complement (that it was a Green cab) after each paragraph (see Table 3). The
base rate (b), evidence (e), and reliability (r) information within each problem was presented in each
of the six possible orders for different subjects. The Cab, Doctor, and Twins problems were also
presented in all possible orders, and the information order of the first problem was crossed with the
problem order, to create 36 different versions of the questionnaire. The information orders of the
second and third problems were linked with that of the first problem, following a pseudo random
design which assured that they were different from the information order of the first problem, and
that every information order occurred equally often in each ordinal position.

Insert Tables 3, 4, and 5 about here.

The numerical information in each problem was constant over all questionaires (Cab problem
base rate - .15, reliability = 80; Doctor problem: b = .25, r = .90; Twins problem: b - .20, r . 60).
In all problems, the evidence supported the unlikely hypothesis (Cab: the Blue cab: Doctor: the
toxic uremia disease; Twins: Stephen), and the reliability of evidence was the same for both
hypotheses, p(EIH) = p-E,-).)

Subjects reported the number of semesters of college math and statistics they had taken, and
rated their experience with the content of the seven problems on 1 - 9 scales

4. Results.
Subjects took from 9 to 54 minutes (mean = 20) to solve the seven word problems. The results

ol only the three probabilistic inference problems will be reported here. Non-numerical responses
were coded as missing. The results pertaining to the subjects' accuracy will be presented first,
fok-nwed by the evaluation of the list of hypotheses and then incidental findings.
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Table 3. The Cab Problem used in this study,
with the separate parts identified.

Introduction. The next word problem is about two taxi cab companies. A cab from one of the
companies was involved in a hit and run accident at night. It is hard to know which company it was
from. You will be asked to estimate how likely it is that the cab involved in the accident belonged to
each of the two cab companies.

In this city there are only two cab companies, the Blue Cab Company and the Green Cab
Company. With what you know now, what is the probability that the cab involved in the hit and run
accident was from the Blue Cab Company? _

What is the probability it was from the Green Cab Company?

Evidence. There was only one witness to the hit and run accident. The witness identified the
cab as blue. With what you know now, what is the probability that it was a Blue Cab?

What is the probability that it was from the Green Cab Company? ___

Base rate. The Green Cab Company is larger, with 85% of the cabs in the city. With what you
know now, what do you think is the probability that a cab from the Blue Cab Company was the one
involved in the accident?

What is the probability it was a cab from the Green Cab Company? __

Reliability. The police were concerned about the accuracy of the witness who saw the
accident. They tested the witness's reliability under the same circumstances that existed on the
night of the accident and concluded that the witness could correctly identify cabs of each one of the
two colors 80% of the time and misidentified them 20% of the time. With what you know now, what
is the probability that the cab was a Blue Cab?

What is the probability that it was a Green Cab?

9
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Table 4. The Doctor Problem.

Introduction. The next word problem is about a doctor trying to figure out what disease a
patient has. The patient is clearly sick, but it is hard to know what disease he has. You will be asked
to estimate how likely it is that the patient has each of two diseases.

The patient comes in to the emergency room at night with a very unusual symptom - his
eyeballs are bright yellow. The doctor knows that there are only two diseases that can produce that
symptom - hepatitis and toxic uremia. People never get them both at the same time. With what you
know now, what is the probability that the patient has toxic uremia? __

What is the probability that the patient has hepatitis?

Reliability. The doctor consults his diagnostic manual and discovers that the Spock test is the
best way to find out whether a patient with yellow eyes has hepatitis or toxic uremia. However, the
Spock test is not perfect. It has an error rate of 10%, and is right 90% of the time. That is, when the
patient has toxic uremia, the Spock test says so 90% of the time, but it falsely indicates that the
patient has hepatitis 10% of the time. Similarly, when the patient has hepatitis, the Spock test will
indicate that the disease is toxic uremia about 10% of the time. With what you know now, what is
the probability that the patient has toxic uremia?

What is the probability the patient has hepatitis? __

Evidence. The doctor orders the lab to do a Spock test on the patient's blood. In two hours the
results are back - the Spook test indicates that the patient has toxic uremia. With what you know
now, what is the probability that the patient has toxic uremia?

What is the probability that the patient has hepatitis?

Base rate. A discussion with a colleague reminds the doctor that toxic uremia is a less
common disease than hepatitis. He checks a textbook and finds that 75% of people with the
symptom of yellow eyes have hepatitis, and only 25% of them have toxic uremia. With what you
now know, what is the probability that the patient has toxic uremia?

What is the probability the patient has hepatitis? __

1(0
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Table 5. The Twins Problem.

Introduction. The next word problem is about two boys. One of them broke a lamp. You will
not know for sure which one did it. You will be asked to estimate the probability that each of them
was the one who did it.

Stephen and Paul are 5 year old twins. One afternoon their mother hired a new babysitter so
she could go out to do errands. Before she left, she took the sitter aside and gave her some advice
about handling the boys. With what you know now, what do you think is the probability that
Stephen is the one who broke the lamp?___

What is the probability that it was Paul?

Evidence. The sitter was preparing a snack in the kitchen. When she glanced into the living
room to check on the boys, she saw one of them, she thought it was Stephen, standing half on the
couch and half on the lamp table, reaching for something on a shelf. Before she could turn off the
water and come out to make him stop, she heard a crash. Running to the living room, she found
Stephen and Paul and a broken lamp. She asked Stephen, "Did you knock over the lamp?" "No",
he answered, "Paul did." But Paul shouted, "No, Stephen did it." With what you know now, what is
the probability that it was Stephen who broke the lamp?

What is the probability that Paul broke the lamp? _

Reliability. Stephen's and Paul's mother enjoys dressing them alike. Before she left, she had
said to the babysitter "New people have trouble telling the boys apart. I'd say they only identify them
correctly 60% of the time. So two times in five, when it is Stephen, you think it is Paul, or it is really
Paul, you think it is Stephen." With what you know now, what do you think is the probability that
Stephen is the one who broke the lamp?__

What is the probability that Paul broke the lamp?

Base rate. On her way out, the twins' mother had told the babysitter: "Paul is usually the
troublemaker: I'd say about 80% of the time it one of them breaks a rule or does something
careless, it is Paul." With what you know now, what do you think is the probability that Stephen is
the one who broke the lamp?

What is the probability that Paul broke the lamp?

i
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4.1. Accuracy.
The mean answers for each step of each information presentation order are given in Table 6.

The accuracy of the subjects' answers at each step can be measured using the mean absolute
deviation between their answer and the normatively correct answers. The correct answers (if
determinable) for each step of each presentation order are presented in Table 7. The mean
absolute deviations between subjects' answer and correct answer are in Table 8.

Insert Tables 6, 7, and 8 about here.
....ttt, -ot ...............................* ........tt

Before any numerical information was presented to them, subjects usually gave the ".5" answer
that the Principle of Insufficient Reason would prescribe. Comparison of Table 6 with Table 7
shows that subjects' answers moved in the appropriate direction at each step of every sequence of
information. Consider for example those subjects who received information in the berorder for the
Cab problem. When given only the base rate (.15 of cabs in city are Blue), their mean estimate of
the probability that the cab in the accident was Blue shifted from .50 to .38 (median .30), moving
toward the correct answer of .15 (Table 8). The second piece of information these subjects received
was the evidence that the witness identified the cab as Blue. Any probability between .15 and 1.0
would now be morrect, depending on the subject's confidence in the witness' report. The mean
answer shifted from .38 to .79 (median .90). The final piece of information for this group of Ss was
the reliability, that the probability is .80 that the witness would say "Blue" (or "Green") given the cab
was truly Blue (or Green). The correct answer here is .41, and subjects' mean answer shifted from
.79 to .69 (median .80).

The pattern is similar for the remaining Cab problem information presentation orders and for the
Doctor and Twins problems. Although the mean answers move in the direction of the correct
answers, the shift is too small (suggesting a process of anchoring and insufficient adjustment). As
more information is given, the answers are more variable and their means deviate increasingly from
the correct answers (Table 8).

Further evidence that subjects answer correctly when given little quantitative information, but
become more inaccurate as the information accumulates, is provided by counting the number of
subjects who gave the right answers (Table 9). In the ber condition of the Cab problem, for
example, 42 of 44 subjects gave the best answer (".50") when they had no information, 18 gave
".15" when they had one piece of information, but none gave ".41" with three pieces of information.
(With two pieces of information, all 44 subjects were within the .15 to 1.0 range of possible correct
answers.) The pattern over all six information presentation orders is that with each additional piece
of information to take into account, fewer subjects give the correct answer. The biggr~t decrease
occurs with the third piece of information, where the norm is the complicated Bayes' Theorem.
Additional results in Tables 6 to 9 will be discussed below when pertinent to the hypotheses.

Insert Table 9 about here.

4.2. Evaluation of the hypotheses.
We now evaluate the hypotheses listed above in the light of the present data. The normative

probabilistic reasoning hypotheses will be considered first, then the non-normative information
integration hypotheses, and finally the heuristic strategies hypotheses.

4.3. Hypotheses Involving variants of normative probabilistic reasoning.
Hypothesis 3 in the above list holds that people's reasoning on probabilistic inference word

problems follows the normative probabilistic procedures or varies them in a minor way. The analysis
of Hypothesis 1-c, in Section 4.4.2 below, includes counts of subjects who applied Bayes' Theorem

12
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Table 6. Mean and median answers at each step of each

Information presentation order, for each problem.

Cab Problem.

Information no info 1st info 2nd info 3rd info
Presentation- ------------- ------------------- -----------------
Order Mean Median Mean Median Mean Median Mean Median N

bearb .50 .50 .38 .30 .79 .90 .69 .80 44
bra .51 .50 .31 .15 .30 .20 .67 .80 40
abr .50 .50 .85 .90 .67 .80 .72 .80 42
erb .50 .50 .85 .90 .76 .80 .61 .68 43
rbe .50 .50 .49 .50 .31 .15 .67 .80 45
reb .50 .50 .53 .50 .75 .80 .64 .75 42

All ord .50 .50 Ir
0  

Ir Ir Ir .67 .80 256

Doctor Problem.

Information no info 1st info 2nd info 3rd info
Presentation- ------------- ------------------- -----------------
Order Mean Median Mean Median Mean Median Mean Median N

bard .49 .50 .27 .25 .93 1.00 .84 .90 41
bra .48 .50 .30 .25 .29 .25 .82 .90 47
ebr .50 .50 .95 1.00 .85 .99 .84 .90 43
erb .48 .50 .96 1.00 .88 .90 .66 .70 43
rbe .49 .50 .51 .50 .30 .25 .75 .90 43
rob .49 .50 .53 .50 .86 .90 .68 .75 42

All ord .49 .50 Ir Ir Ir Ir .77 .90 259

Twins Problem.

Information no info 1st info 2nd info 3rd info
Presentation- ------------- ------------------- -----------------
Order Mean Median Mean Median M nn Median Mean Median N

bar .49 .50 .26 .20 .52 .50 .44 .50 44
bra .50 .50 .26 .20 .34 .35 .45 .50 43
ebr .50 .50 .65 .68 .45 .45 .46 .50 42
erb .50 .50 .65 .70 .58 .60 .34 .25 43
rbe .50 .50 .50 .50 .27 .20 .39 .35 42
rob .49 .50 .49 .50 .57 .60 .37 .40 48

All ord .50 .50 Ir Zr Ir Ir .41 .40 262

alnformation order: b = base rate, e = evidence, r = reliability.
bCab Problem: b - .15, e - 1.0, r = .80.
cThe overall mean is meaningless in these columns, because the

available information at these steps differs across presentation orders.
dOoctor Problem b - .25, e = 1.0, r = .90.
OTwins Problem: b = .20, e - 1.0, r - .60.

13
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Table 7. Correct answers for each step,
each information presentation order, of the Cab problem.

Amount of information presented
Information
Presentation None One Two Three

Order Piece Pieces Pieces

ber Formulaa .5b b b to ec Sayes
'd

Cab .5 .15 .15-1 .41

Doctor .5 .25 .25-1 .75

Twins .5 .20 .20-1 .27

bre Formula .5 b bO Bayes'
Cab .5 .15 .15 .41

Doctor .5 .25 .25 .75
Twins .5 .20 .20 .27

ebr Formula .5 .5 to ec b to e Bayes'
Cab .5 .5-1 .15-1 .41

Doctor .5 .5-1 .25-1 .75
Twins .5 .5-1 .20-1 .27

erb Formula .5 .5 to a rf  Bayes'
Cab .5 .5-1 .80 .41

Doctor .5 .5-1 .90 .75
Twins .5 .5-1 .60 .27

rbe Formula .5 .5e b Bayes'
Cab .5 .5 .15 .41

Doctor .5 .5 .25 .75
Twins .5 .5 .20 .27

reb Formula .5 .5 r Bayes'

Cab .5 .5 .80 .41
Doctor .5 .5 .90 .75
Twins .5 .5 .60 .27

aFirst row gives general formula for correct answer for all problems; next three rows give

specific correct answers for each problem.

bLacking other information, p(H) = .5.

CAny answer in this range would be reasonable, depending on reliability (not yet given).

dBayes' Theorem:

/= - p(EIM)Xp(H)
p(HE) p(E1)xpQ-) + p(E/-H)xp(-H)

OReliability has no impact in the absence of evidence.

tApplication of Bayes' Theorem with a prior of p(H) = .5 yields p(H/E) = p(E/H), the reliability.

14
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Table 8.
Mean absolute deviation of subject's answer from correct answer,

at each step of each information presentation order, for each problem.

Cab Problem.

Info:, no info 1 piece info 2 pieces info 3 pieces info
Pres'n. -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - -

Order mean St Dev Mean St Dey Mean St Dev Mean St Dev

ber .01 .05 .23 .27 )MA NA .33 .11
bre .00 .03 .16 .25 .16 .21 .35 .11
ebr .00 .00 NA NA NA KA .32 .11
orb .00 .00 NA NA .05 .09 .27 .14
rbe .00 .02 .04 .08 .16 .23 .33 .15
rob .00 .00 .07 .12 .06 .13 .30 .13

Mean .00 .03 .12 .21 .11 .18 .32 .13

Doctor Problem.

Infor. no info 1 piece info 2 pieces info 3 pieces info
Pres'n. -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - -

Order Mean St Dev Mean St Dev Mean St Dev Mean St 0ev

ber .01 .05 .03 .11 NA NA .16 .08
bre .02 .09 .05 .14 .07 .17 .18 .11
abr .00 .00 NA NA NA NA .15 .08
orb .02 .08 NA NA .02 .07 .20 .17
rbe .01 .05 .06 .13 .06 .13 .22 .17
reb .01 .05 .07 .15 .04 .14 .21 .17

Mean .01 .06 .05 .13 .05 .13 .19 .14

Twins Problem.

infor. no info 1 piece info 2 pieces info 3 pieces info
P res'n . -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - -

Order Mean St 0ev Mean St Dev Mean St Dev Mean St 0ev

ber .01 .08 .08 .17 NA NA .20 .11
bre .00 .00 .07 .13 .15 .15 .22 .18
abr .00 .00 NA NA NA NA .21 .14
erb .00 .00 NA NA .10 .09 .15 .14
rbe .00 .'00 .01 .04 .07 .17 .15 .13
rab .01 .07 .03 .09 .08 .13 .17 .14

Mean .00 .04 .05 12 .10 .14 .19 .14

a5NA' indicates that there is no single correct answer for some combinations of information.
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Table 9. Number of subjects with correct answer, after each piece

of information, each information presentation order, for each problem.

Cab Problem.
.........................................................................

No information 1 piece info 2 pieces info 3 pieces info

Wrong Right Wrong Right Wrong Right Wrong Right

bar 2 42 26 18 a) (44) 44 0
bre 1 39 18 22 30 10 40 0
ebr 0 42 (0) (42) (2) (40) 42 0
erb 0 43 (0) (43) 11 32 43 0
rbe 1 44 11 34 25 20 45 0
reb 0 42 11 31 10 32 42 0

Totalb 4 252 66 105 76 94 256 0
(66) (190) (78) (178)

% Correct 98.4 61.4 55.3 0.0
(74.2) (69.5)

.........................................................................

Doctor Problem.
-------------------------------.-.---------------------------------------

No infor--tion 1 piece info 2 pieces info 3 pieces info

Wrong Right Wrong Right Wrong Right Wrong Right

bar 2 39 3 38 (0) (41) 41 0
bre 4 43 7 40 17 30 47 C
obr 0 43 (0) (43) (0) (43) 41 2
erb 3 40 (0) (43) 7 36 41 2
rbe 1 42 11 32 12 31 43 0
reb 1 41 10 32 5 37 38 4

Total 11 248 31 142 41 134 251 8

(31) (228) (41) (218)

% Correct 95.8 82.1 76.6 3.1
(88.0) (84.2)

Table 9 is continued on next page.
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Table 9, continued

Twin Problem.

No information 1 piece info 2 pieces info 3 pieces info

Wrong Right Wrong Right Wrong Right Wrong Right

ber 1 43 13 31 (1) (43) 44 0
bre 0 43 14 29 28 15 42 1
ebr 0 42 (1) (41) (1) (42) 42 0
erb 0 43 (1) (42) 28 15 43 0
rbe 0 42 6 36 11 31 42 0
rob 1 47 7 41 22 26 48 0

Total 2 260 40 137 89 87 261 1
(42) (220) (91) (171)

% Correct 99.2 77.4 49.4 0.4
(84.0) (65.3)

aFor the combinations of information for which there is no single correct answer, the number of

subjects answering in the acceptable range is given.

bTotals and %s Correct in parentheses include subjects for whom any answer in a given range

could be considered correct.

17
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either to the correct variables or to their complements. This happened very rarely.

If Hypothesis 3-a is true, a subject's only deviation from the normative probabilistic inference
processes would be due to his or her consistent use of subjective probabilities that differ from the
objective probabilities. Inspection of the answers when the subject has received only the b
information (orders ber and bre, after 1 piece of information, in Tables 1 and 3) shows that the
median subject uses exactly the correct number in 5 of the six b conditions. Yet these subjects'
mean and median answers at the final step (after 3 pieces of information) are substantially different
from the Bayes' Theorem answer. In general, subjects are too accurate when given 0, 1, or 2 pieces
of information, and too inaccurate with 3 pieces, for there to be a single subjective transformation of
the probabilities that they apply consistently in producing all their answers.

Hypothesis 3-b suggests that people consider the base rate information irrelevant in principle,
but otherwise follow the rules of probabilistic inference. If they apply Bayes' Theorem when they
have all 3 pieces of information, using a prior of .5 instead of the base rate, their normatively correct
answer would be identical to the reliability. In this study, as in previous ones, the answer after three
pieces of information was frequently the reliability (Cab problem: 39.5%; Doctor problem: 59.8%;
Twins problem: 9.2%). The following findings are consistent with the hypothesis that subjects
answer correctly when there is no base rate information: with no information, over 85% of all
subjects correctly answer ".5"; with r only, over 75% of subjects correctly answer ".5"; with r and e,
75% (Cab problem), 85% (Doctor), and 45% (Twins) of subjects correctly give the reliability.
However, Hypothesis 3-b predicts that when given the base rate information alone, subjects would
ignore it and use the .5 of the Principle of Insufficient Reason. The b conditions disprove this, for
the base rate was given as the answer by 48% (Cab), 89% (Doctor), and 78% (Twins) of the
subjects (Table 8). Hence there is not a general, principled ignoring of the base rate (substituting .5
instead) that could account for the high use of the reliability when subjects have all three pieces of
information.

The present results confirm earlier findings that subjects' responses to Bayes' Theorem word
problems are not produced using the normative procedures nor their minor variants. However, the
results also show that when the situation is simpler because not all of the information pertinent to
Bayes' Theorem is present, the modal response is to give exactly the most appropriate answer.
This is true when the appropriate answer is the base rate, counter to Hypotnesis 3-b.

4.4. Hypotheses Involving the non-normative Integration of the available
Information.

Hypolhesis 1 holds that people answer word problems by "combining' the available numerical
information in some form. Although the correct answers are also produced by combining
information, the attention here is on a broad set of possible forms of combination. Each of these
hypotheses assumes that the integration is governed by the same rules at each step of the word
problem, contingent only on the availability of information.

4.4.1. The use of available numbers.
Hypothesis 1 -a holds that subjects use the simplest form of integration -- responding with one

number that is available in the word problem and ignoring the others. To test this we will determine
how many subjects answered with one of the available numbers. We define a number as 'available'
K it is present as a number in the text of the problem, present in verbal form (needing to be
translated to a number), or available after the operation of complementation. The reliability p(EH)
and the relative frequency of the complementary event p(-H) are given explicitly in the word
problem. Some other numbers are implicitly available: the base rate of tne target event p(H), which
is produced by taking the complement of p(-H), i.e., 1 - p(-H); the prior probability .5; the 1.0 of
complete belief in the evidence in favor of H; and the 0.0 of complete doubt. Other available
numbers are the answers the subject gave on the first step ("original answer) and on the most
recent step ('previous answer-) of the problem, Finally, subjects may find an answer by taking the
complement of the reliability or of their most recent answer.

i8
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Tables 10, 11, and 12 show the number of subjects who used each of these available answers
after receiving the first, second, and third piece of information, respectively. For simplicity, if there is
no match of a category, the row representing that category is excluded from the tables. Table 13
summarizes by comparing the use of available and non-available numbers. If an answer fit in more
than one of these categories, as when .8 is both the reliability and the subject's previous answer,
then it is counted only in the first of the categories listed in the table. The order in which strategy
categories appear in the table reflects the researcher's assumptions about the subjects'
propensities to use the strategies. The danger of this assumption is that when two strategies
produce the same answer, if a subject uses the "less likely' strategy, it will be counted as an
instance of the "more likely" strategy. While our analysis may inadvertently ignore a strategy on one
problem due to such an overlap in the results of two strategies, this neglect is not likely to occur with
all three word problems, because with the different numbers used in the problems, the pattern of
overlaps among the numbers resulting from applying strategies is different.

Insert Tables 10, 11, 12, and 13 about here.

After the first piece of information (Table 10), 74.3% (Cab problem), 82.2% (Doctor), and 78.2%
(Twins) of the answers made use of one of the available numbers (Table 13). (Note that when the
base rate information b was given, neither reliability (nor its complement) nor evidence were
available, so it subjects used one of these numbers they produced it with a strategy other than the
use of an available number. These responses were excluded from the above percentages: and
analogously for the a and r conditions.) Although choice among the available numbers is not
addressed by Hypothesis 1-a (see Hypothesis I-c), note that the most frequently used available
numbers were the appropriate answers (see Table 7: b for the b condition, .5 for the r condition,
and available numbers in the .5 to 1.0 range for the e condition.) But the subjects who did not give
these best answers chose one of the other available numbers as the answer as often as they chose
non-available numbers.

After the second piece of information (Table 11), the proportions of subjects using available
numbers were: Cab: 68.4%; Doctor: 83.3%, and Twins: 76.7% (Table 13). For the br, er, rb, and re
conditions there is a correct answer and, just as occurred after one piece of information, the most
frequent response in each of these conditions, for every problem, was this correct answer For the
be and eb conditions, any answer between b and 1.0 could be correct (see Table 7), and 40% of
the subects used available numbers from within this range. Many of the incorrect answers also
used available numbers (see Table 13).

After the third piece of information (Table 12), 61.8% (Cabs), 73.2% (Doctor), and 75.9%
(Twins) of the subjects used one of the available numbers (Table 13). On the Cab and Doctor
problems, the reliability (which is not the correct answer) was used most frequently, and there was
substantial use of other available numbers. On the Twins problem, there was less use of the
reliability .60 and more of the base rate .20 and the prior probability .50. (We will discuss problem
differences in the Incidental Results section, below.)

These results indicate strong support for Hypothesis 1 -a. The majority of subjects answer using
rmbers that are available to the careful reader of the word problem. However, the choice of one
available number rather than another is not explained by this hypothesis.

4.4.2. Application of arithmetic operations to available numbers.
Hypothesis 1-a does not account for from 25% to 40% of the subjects' responses. Presumably

these answers are produced using more than just one piece of information. This integration may be
done through the application of arithmetic operations to the available numbers (Hypotheses 1-b and
1-c) or through a more intuitive, holistic judgment process (Hypotheses 1-d, 1-e, and 14).

How well does the set of possible arithmetic operations, applied to the available numbers,
account for the answers of those subjects who did not use available numbers? An automated

i9
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Table 10. The number of subjects who used each of the available
answers, given one piece of information.

Cab Problem Information TOTAL

B E R
------------....-----....------...-----

50/50 or .5 2 10 65 77
Base rate, p(H) 40 0A  0a  40
Reliability 1a  6& 8 15
Evidence, 1.0 0a  33 0a  33
p(-H) from text 12 1 a  0 A  13
Original answerb 0 0 1 1
1 - reliabilty 3& 04 2 5
Another number 25 35 11 -1

TOTAL 83 85 87 255
.......................................

........................................

Doctor Problem B E R TCrAL

50/50 or .5 1 1 64 66
Basp rate, p(H) 76 U& 01 76
Reliability 01 14A  6 20
Evidence, 1.0 0A  44 i 45
p(-H) from text 5 24 0A 7
Original answer 3 0 1 4
1 - reliability ia  0a 1 2
Another number 2 24 12 38

TOTAL 88 85 85 258
.......................................

.......................................

Twins Problem B z R TOTAL

50/50 or .5 8 31 77 116
Base rate, p(H) 60 Ia la 62
Reliability 0. 7 F 13
Evidence, 1.0 0A S 0A 3
p(-H) from text 4 9A 0a 13
Original answer 1 0 1 2
1 - reliability 3a 04 5 8
Another number 11 34 0 45

TOTAL 87 85 90 262
.......................................

aAnswprs in these cells could not have been produced by strategy of using an available
number, because the number had not been presented yet.

blf different from above categories.
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Table 11. The number of subjects who used each of the available
answers, given two pieces of information.

---------------------------------------------------------

Cab Prcblem Information Presentation Order TOTAL

be br eb or rb re
. .. .. .. . .. . . .. . . . . . . .-- -- - -- - - -- - - - -- -- - - -- - - - - -- -- - - - --

50/50 or . 5 3 5 1 2 2 18
Base rate, p(H) 1 10 5 0a  20 0a  36
Reliability 1& 0 3A 32 2 32 70
Evidence, 1.0 11 04 8 0 0& 1 20
p(-H) from text 2 1 7 0a  3 0a  13
Oriqinal answer 0 J 0 0 0 0 0
Previous answera 0 7 7 0 0 1 15
1 - reliability 0* 3 0a  0 2 0 5
Another number 23 16 5 10 16 6 76

TOTAL 43 40 40 43 45 42 253

Doctor Problem be br eb or rb re TOTAL

50/50 or .5 1 1 2 1 5 1 11
Base rate, p(H) 1 30 3 0* 31 0a  65
Reliability 4a  2 4& 36 0 37 83
Evidence, 1.0 23 0a  18 0 0A 1 42
p(-H) from text 3 1 2 0a  2 C. 8
Original answer 0 0 0 0 0 0 0
Previous answer 0 1 6 0 3 0 10
1 - reliability 0a  2 0A  0 0 1 3
Another number 9 10 8 6 1 1 35

TOTAL 41 47 43 43 42 41 257

Twins Problem be br eb or rb re -7)TAL

50/50 or .5 8 9 7 12 2 14 52
Base rate, p() 11 15 12 0a  31 0& 69
Reliability 3& 2 4a  15 0 2' 50
Evidence, 1.0 1 0* 1 0 0a  0 2
p(-H) froz. text 6 1 1 5& 3 I 17
Original answer 1 0 0 0 0 0 1
Previous answer 0 2 2 0 0 8
1 - reliability la 7 4* 4 1 0 17
Anothcr number 13 7 8 5 5 5 43

TOTAL 44 43 41 43 42 48 261

4Answers in these cells could not have been proaucea Dy strategy of using an available
number, because the numer had not beon presented yet.

bit different from above categories.
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Table 12. The number of subjects who used each of the available
answers, given three pieces of information.

Cab Problem Information Presentation Order TOTAL

ber bre ebr erb rbe reb

50/50 or .5 2 1 2 3 1 1 10
Base rate, p(H) 3 1 0 5 1 2 12
Reliability 21 22 18 11 13 16 101
Evidence, 1.0 0 1 0 1 1 1 4
Doubt evid, 0 0 0 0 0 0 0 0
p(-H) from text 3 0 3 0 3 3 12
Original answer4 0 0 0 0 1 0 1
Previous answera 4 6 1 0 2 1 14
1 - reliability 1 V 0 0 0 0 1
Another number 10 8 18 22 20 18 96

TOTAL 44 39 42 42 42 42 251

Doctor Problem ber bre ebr erb rbe reb TOTAL

50/50 or .5 1 1 1 2 1 2 8
Base rate, p(H) 0 1 0 4 0 2 7
Reliability 31 36 32 14 .25 17 155
Evidence, 1.0 0 1 1 0 2 1 5
Doubt evid, 0 0 0 0 0 0 0 0
p(-H) from text 0 0 2 2 0 4 8
Original answer 0 0 0 0 0 1 1
Previous answer 0 0 0 0 1 1 2
1 - reliability 0 0 0 0 1 1 2
Another number 9 7 7 21 12 13 69

TOTAL 41 46 43 43 42 42 257

Twins Problem ber bre ebr erb rbe reb TOTAL

50/50 or .5 13 14 12 3 6 8 56
Base rate, p(H) 6 6 4 17 11 8 52
Reliability 5 6 4 2 5 2 24
Evidence, 1.0 0 2 0 0 0 0 2
Do'bt evid, 0 0 1 0 0 0 1 2
p(-H) from text 0 0 0 2 0 2 4
Original answer 0 0 0 0 0 0 0
Previous answer 2 5 1 2 2 2 14
1 - reliability 8 2 9 6 5 14 44
Another number 10 7 11 11 13 11 63

TOTAL 44 43 41 43 42 48 261
.. ienfmoeag............................................

alf different from above categories.
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Table 13. Summary of the use of available numbers.

One piece of information.

Available numbers Non-
------------ available

Correct Other Total

Cab 58.0% 16.3% 74.3% 25.7%
Doctor 71.7% 10.5% 82.2% 17.8%
Twins 65.3% 12.9% 78.2% 21.8%

Two pieces of information.

Available numbers Non-
------------ available

Correct Other Total

Cab 51.0% 17.4% 68.4% 31.6%
Doctor 70.8% 12.5% 83.3% 16.7%
Twins 44.1% 32.6% 76.7% 23.3%

Three pieces of information.

Available numbers Non-
available

Reliability Other Total

Cab 40.2% 21.5% 61.7% 38.2%
Doctor 60.3% 13.1% 73.4% 26.8%
Twins 9.2% 66.7% 75.9% 24.1%
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strategy identification procedure was used to answer this question. It takes advantage of the fact
that the inputs are numbers and the strategies are well learned arithmetic operations (presumably
executed without error), to identify the strategies without the laborious and unreliable coding
process 1hat is typical of verbal protocol analysis. If the analysis is inappropriate because its
assumption is not met -- a subject does not apply operations to the available numbers -- the
procedure would fail to categorize the subject's answers. The procedure has a weakness, however
-- if there are multiple strategies that produce the same answer, it can not determine which strategy
the subject used. To check on the relevance of this weakness, we considered the possibility that
the subjects might have applied arithmetic operations that happened to produce answers identical
to the available numbers.

Table 14 shows the full set of arithmetic operations that were explored. The operations are
categorized as: addition, subtraction, multiplication, division, distributive combination (A+P)*U
(Krantz and Tversky, 1971), dual-distributive combination A*P+U, and applications of Bayes'
Theorem. In addition, the possibility that subjects use conventional probabilities (i.e., thirds,
quarters, fifths, tenths, and the extreme probabilities) was considered (Hypothesis l-d). Every
possible application of each arithmetic operation to the available numbers was made, with the
constraint that the result be in the 0-1 range, and that the last answer be combined with only the
most recently presented information. The "original answer" was excluded since it was ".5" (which
was included) in over 95% of all cases. As with the analysis of the use of available numbers (Tables
10 to 13), the assignment of answers to these arithmetic operation categories depended on their
order in the category list, so that if an answer matched one of the early categories in the list, it
would not have a chance to match a later category.

.t ..................................

Insert Table 14 about here.

In the matching procedure used in this analysis, the first four categories capture the use of
available numbers as in the previous analysis. The next set of categories represent the arithmetic
operations. The final categories are the conventional probabilities and numbers that fall in the
ranges between the points produced by applying the operations to the available numbers. Note that
if a number had not yet been presented to the subject, it would not be use- in this analysis in
producing the set of possible arithmetic operation results.

The numbers of subjects who gave an answer falling in each category after the first, se-'ond,
and third pieces of information are shown in Tables 15, 16, and 17, respectively. To save space, it
for a given problem no answers matched one of the arithmetic operation strategies, e.g., Bayes'
theorem or (A+P)*U, then the operation was excluded from the table. N-rretheless, the reader
should remember that all the answers in Tables 15, 16, and 17 were tested for possible matches to
every one of these categories, in the order specified in Table 14. Table 18 summarizes these
results by collapsing the first three categories into the "use of available number" category, and all
the categories from Addition through Bayes' Theorem into the "arithmetic operation" category. It
can be seen that the popularity of the use of the available numbers decre'ases slightly as more
numbers become available. The unambiguously identified use of conventional probabilities
decreases with additional information, while the use of answers that can not be categorized (though
rare) increases.

Insert Tables 15, 16,17, and 18 about here.

4.4.3. Ambiguity of strategy IdentIfIcation.
In the present analysis, the only data are the subjects' answers; these are assigned to strategy

categories because they match the answer that one would get by using the strategy. There is
ambiguity in these strategy identifications, because sometimes more than one strategy may
produce the same answer. If a subject produces the answer by doing a complicated calculation, the

,.
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Table 14.
Formulas used in categorization scheme.

Addition. Sum of available numbers.

b + pr; b + r; pr + r; c (b) + pr; c (b) + r; b + c (r);
pr + c (r) ; c (b) + c (r) ;

Sum of previous answer and most recent information.

Ia + mi; c (Ia) + mi; Ia + c (mzi) ; c (la) + c (mri) .

Subtraction. Difference between available numbers.

abs (b-pr); abs (l-r); abs (b-c); abs (pr-r); abs (pr-e); abs (r-e);
absCc (b)-pr) abs (c~b) -r); abs (c (b) -e); abs (b-c Cr)); abs (pr-c(r));
absWc:J)-e); abs(c(b)-c(r)); abs(b - c(b)); abs (r - cr)

Difference between previous answer and moat recent information.

abs Cla - mi); abs(la - c(inni)); abs(c(la) - mi); aba(c(la) - c(ini));

abs U& - c (la)) .

Multiplication. Product of available numbers.

b*pr; b*r: prar; bac Cr); prac (b); prac (r); c (b)ac (r); bac (b);
r*c(b); r*c(r);

Product of previous answer and most recent information.

la*c~la); la*inni; la*c~inni); c(la)*mxi; c~la)*c~inni).

Multiplicative triplets.

b*r*pr; b*r*c~r); b*pr*c~r); b*r*c~b); b*c~b)*pr; c~b)*r*c(r);

prarac (b); prac Cb)*cCr).

Division. Quotient of available numbers.

b/pr; b/r; pr/r; b/c Cr); c Cb)/c Cr); b/c Cb): pr/c (b); n/c b);
pr/c~r); r/c(r);

Quotient of previous answer and most recent information.

la/c Cia); la/min; la/c (mi); c (la)/min; c Cla) /c Cnn).

Table 14 is continued on next page.
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Table 14, continued.

(A + P)*U. Distributive rule.

(b + pr)*r; (b + r)*pr; (r + pr)*b; (c(b) + pr)*r; (c(b) + r)*pr;
(r + pr)*c(b); (b + pr)*c(r); (b + c(r))*pr; (c(r) + pr)*b;
(c(b) + pr)*c(r); (c(b) + c(r))*pr; (c(r) + pr)*c(b).

...................................................................

A*P + U. Dual-distributive rule.

b*pr + r; b*r + pr; pr*r + b; c(b)*pr + r; c(b)*r + pr;
pr*r + c(b); b*pr + c(r); b*c(r) + pr; pr*c(r) + b; c(b)*pr + c(r);
c(b)*c(r) + pr; pr*c(r) + c(b); pr*r*c(r); b*c (b) *c (r).

-------------------------------------------------------------------

Bayes' Theorem. Application of Bayes' Theorem to available numbers.

Using prior of .5: (.5*r)/(.5*r + c(.5)*c(r)) = r;
Using base rate: (b*r)/(b*r + c(b)*c(r));
Using wrong base rate: (c(b)*r)/(c(b)*r + b*c(r));
Using wrong reliability: (b*c(r))/(b*c(r) + c(b)*r);
Using wrong base rate

and wrong reliability: (c(b)*c(r))/(b*r + c(b)*c(r)).

Conventional numbers. Used comon probabilities.

.5; .25; .75; .33 or .333; .66 or .67 or .666 or .667; .2; .4; .6;

.8; .1; .3; .5; .7; .9; .05; .95; .02; .98; .01; .99.

b = base rate; r = reliability; pr - prior (.5); fa = last answer; mi = most recent information; c(x) =
complement of x, i.e., (1-x); abs(x) = absolute value of x.
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Table 15. Number of answers matching each strategy category,
with one piece of information.

Information

Cab problem B E R TOTAL

Number from word problem 12 0 8 20
# implicit in word problem 42 43 65 150
1 - an available # 0 0 2 2
Function of previous answer 1 0 1 2

Sum of available numbers 0 0 1 1
Difference betw available #s 6 0 1 7
Diff, avail # & previous ans 0 0 1 1
Product of available #a 1 0 8 9
Product, avail # & previous ans 3 0 0 3
Quotient of available Js 5 0 0 5

Used conventional probabilities 11 38 0 49
Used numbers in various ranges 3 4 0 7

TOTAL 84 85 87 -56

Doctor Problem B E R TOTAL

Number from word problem 5 0 6 11
# implicit in word problem 77 45 64 186
1 - an available # 0 0 1 1
Function of previous answer 3 1 1 5

Sum of available numbers 0 0 2 2
Difference betw available #a 0 0 3 3
Product of available #a 0 0 3 3
Quotient of avail & prev #s 0 0 1 1

Used conventional probabilities 3 33 2 38
Used numbers in various ranges 0 7 2 9

TOTAL 88 86 85 259

Table 15 is continued on the next page.
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Table 15, continued.

Twins Problem B E R TOTAL

Number from word problem 4 0 6 10
# implicit in word problem 68 34 77 179
1 - an available # 0 0 5 5
Function of previous answer 1 0 1 2

Difference betw available #a 1 0 1 2
Product of available #s 6 0 0 6
Product, avail # & previous ans 6 0 0 6

Used conventional probabilities 1 49 0 50
Used numbers in various ranges 0 2 0 2

TOTAL 87 85 90 262
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Table 16. Number of answers matching strategy category,
with two pieces of information.

Information Presentation Order

Cab Problem be br eb or rb re TOTAL

Number from word problem 2 1 7 32 5 32 79
# implicit in word problem 17 13 18 1 22 3 74
1 - an available # 0 3 0 0 2 0 5
Function of previous answer 1 7 10 0 0 1 19

Sum of available numbers 2 0 0 3 3 1 9
Sum of avail # & previous ans 0 0 1 0 0 0 1
Difference betw available #s 0 3 0 3 2 1 9
Diff, avail # & previous ans 0 0 1 1 3 0 5
Product of available #s 0 7 1 1 6 2 17
Product, avail # & previous ans 0 1 0 0 1 0 2

Quotient of available #s 1 4 1 0 1 0 7

Used conventional probabilities 18 0 2 0 0 1 21
Used numbers in various ranges 3 1 1 2 0 1 8

TOTAL 44 40 42 43 45 42 256

Doctor Problem be br eb er rb re TOTAL

Number from word problem 3 3 2 36 2 37 83
# implicit in word problem 25 31 23 1 36 2 118
1 - an available # 0 2 0 0 0 1 3
Function of previous answer 0 1 9 0 4 1 15

Sum of available numbers 0 1 0 0 0 1 2
Difference betw available #s 0 4 0 3 0 0 7
Diff, avail # & previous ans 0 1 2 1 0 0 4
Product of available #s 0 2 0 0 0 0 2
Quotient of available #s 0 1 0 0 0 0 1

Used conventional probabilities 9 0 4 0 0 0 13
Used numbers in various ranges 4 1 3 2 1 0 11

TOTAL 41 47 43 43 43 42 259

Table 16 is continued on the next page.
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Table 16, continued.

Twins Problem be br eb er rb re TOTAL

Number from word problem 6 3 1 15 3 26 54
# implicit in word problem 20 24 20 12 33 16 125
1 - an available # 0 7 0 4 1 0 12
Function of previous answer 1 2 7 5 0 0 15

Sum of available numbers 2 0 1 0 0 2 5
Difference betw available #a 6 1 6 0 3 0 16
Diff, avail # & previous ans 0 1 0 0 1 0 2
Product of available #s 1 2 2 2 0 0 7
Quotient of available #a 1 0 1 2 0 1 5

Used conventional probabilities 5 1 2 1 0 3 12
Used numbers in various ranges 2 2 2 2 1 0 9

TOTAL 44 43 42 43 42 48 262
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Table 17. Number of answers matching each strategy category,
with three pieces of Information.

Information Presentation Order

Cab Problem ber bre ebr erb rbe reb TOTAL
........................................................................

Number from word problem 24 22 21 11 16 19 113
# implicit in word problem 5 3 2 9 3 4 26
1 - an available # 1 0 0 0 0 0 1
Function of previous answer 4 7 1 1 6 1 20

Sum of available numbers 0 2 4 6 4 5 21
Sum of avail # & previous ans 0 0 0 1 0 0 1
Difference betw available #s 1 0 6 4 0 3 14
Diff, avail # & previous ans 1 0 0 0 0 3 4
Product of available #s 3 0 1 3 6 2 15
Product, avail # & previous ans 0 0 0 1 0 0 1
Quotient of available #s 3 0 2 3 1 2 11
Combination: (A+P)*U 0 1 1 1 1 0 4

Used conventional probabilities 0 4 1 1 4 0 10
Used numbers in various ranges 2 1 3 2 4 3 15

TOTAL 44 40 42 43 45 42 256

........................................................................

Doctor Problem ber bre ebr erb rbe reb TOTAL
........................................................................

Number from word problem 31 36 34 lb 25 21 163
# implicit in word problem 1 3 2 6 3 5 20
1 - an available # 0 0 0 0 1 1 2
Function of previous answer 0 1 0 0 2 2 5

Sum of available numbers 3 2 1 3 0 1 10
Difference betw available #s 3 2 0 5 4 3 17
Diff, avail # & previous ans 2 0 0 1 0 0 3
Product of available #s 1 1 0 2 3 2 9
Product, avail # & previous ans 0 0 1 0 0 0 1
Quotient of available #s 0 0 0 1 0 0 1

Used conventional probabilities 0 2 3 4 1 5 15
Used numbers in various ranges 0 0 2 5 4 2 13

TOTAL 41 47 43 43 43 42 259

Table 17 is continued on the next page.

.31



Diagnostic Inference. August 11, 1987

Robert M. Hamm, University of Colorado.

Table 17, continued.

Twins Problem ber bre ebr erb rbe reb TOTAL

Number from word problem 5 6 4 4 5 4 28
# implicit in word problem 19 23 16 20 17 17 112
1 - an available # 8 2 9 6 5 14 44
Function of previous answer 2 5 2 2 2 2 15

Sum of available numbers 3 2 1 2 0 2 10
Difference betw available #s 1 1 2 3 8 4 19
Diff, avail # & previous ans 1 0 0 4 0 1 6
Product of available #s 3 2 1 0 0 0 6
Product, avail # & previous ans 1 0 1 0 0 0 2
Quotient of available #a 0 0 3 0 3 2 8

Used conventional probabilities 0 0 0 1 0 0 1
Used numbers in various ranges 1 2 3 1 2 2 11

TOTAL 44 43 42 43 42 48 262
........................................................................
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Table 18. Summary. Number of answers matching each
class of strategy, at each step.

PROBLEM

Cab Doctor Twins

Amount of info 1 2 3 1 2 3 1 2 3

Class of
strategy used

Available number 172 158 140 198 204 185 194 191 184
Previous answer 2 19 20 5 15 5 2 15 15
Arithmetic oper. 26 50 71 9 16 4 14 35 51
Conventional prob. 49 21 10 38 13 15 50 12 1
Other 7 8 15 9 11 13 2 9 11

Total 256 256 256 259 259 259 262 262 262
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credit would be given incorrectly to a simpler process -- the use of an available number -- because
that comes earlier in the matching sequence. The same ambiguity occurs with the conventioral
probabilities, the last class of specific answers in the matching process. If the subject uses
conventional probabilities in an intuitive judgment process, his or her answer might be counted as
an instance of the use of an available number or as the application of an arithmetic operation to
available numbers.

The extent of such ambiguity in the data was estimated using the answers to the Cab problem,
after three pieces of information (Table 19). Two categorization procedures are compared:

1. A condensed version of the categorization scheme of Table 17, in which the categories
are collapsed into (a) the use of available numbers, (b) the use of each particular
arithmetic combination of the available numbers, or of conventional probabilities (row
labels in Table 19), and (c) "other", including uncategorizaile answei s as well as all other
particular arithmetic combinations, whether they appeared before or after the category of
interest in the sequence of matches.

2. A categorization scheme which, for eact. ,alategy in turn (arithmetic operation or use of
conventional probability), places it first in the sequence of matches.

Insert Tahle 19 about here.
............. **...... ....................... **

Ambiguity between arithmetic operations and use cf available numbers. Subjects'
answers were identified as using the arithmetic operation of addition of available numbers (first two
rows of Table 19) only 22 times (8.6%) when addition was matched following the available
numbers, but they were identified as using addition 43 times (16.8%) when it was considered first in
the matching sequence. Thus 8 2% of the subjects' answers to this problem are ambiguous with
respecrt to the addition operation. The subject could have produced these answers either by using
one of the available numbers (including his or her previous answer), or by adding together two of
the available numbers. Although the ambiguity is resolvable in principle, as by studying thinking
aloud protocols, it is unresolvable in the present study except by considering which strategy is more
plausible. The more likely it is that the subject answered with an available number, rather than
answering by adding two available numbers together, the closer our estimate of the percent of
people using addition should be to 9% rather than 16/6.

Applying this analysis to the other arithmetic operations reveals that the only Operition with a
large ambiguous component is subtraction. For fully 59% of the answers, it is ambiguouo whether
the subip used , vilh e ni!,r.rrrs or!--ok 41- differen,- hetwren avc-"':" l,e
subtractions in question are e - c(r) = r [i.e., evidence (1.0) minus the complement of reliability], e -
c(b) = b, e - b = c(b), and e - c(.51 = .5. It is reasonable to assume that the subjects use the
available numbers (the right hand sides of the above equations), rather than a subtraction st'ategy
(the left hand sides), and so the best estimate of the proportion of subjects who subtracted would be
7% rather than 66% (Table 19).

Ambiguity between the use of conventional probabilities versus the use of available
numbers or arithmetic operations. When subjects' answers a,' assigned to the conventional
probability category afterthe categories representing the use of available numbers and arithmetic
operations on the available numbers have been matched, only 10 (3.9%) are matched. When the
ansNers are matched to this category iirst, 1b (73.8%) match the conventional probabil;,:es. It is
probably common for subjects to use conventional probabilities to express an intuitive impression,
the result of an information integration prrcass, or the result of an anchoring and adjustment
process. Hence we can not eliminate the hypothesis that subjects respond with conventional
probabilities on the 70% of trials where strategy identification is ambiguous. Therefore, the same
data that support the idea that subjects use the available numbers could also be interpreted as
supporting their ube of conventional probabilities. This ambiguity is resolvable in principle --
unconventional probabilities could be presented in the word problems so that the results of using
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Table 19. Range of ambiguity in categorization procedure
for the arithmetic operations and the use of conventional probabilities,

in contrast with the use of available numbers.
Cab problem data, three pieces of information.

Category to which answfr is assigned
by each analysis procedure. N = 256.

OP"RATION A2ALYSISa............................
Available Arithmetic Other
Number Operation

Addition Av 160 22 74
Op - 43 213

Subtraction Av 160 18 78
Op - 170 86

Multiplication Av 160 16 80

Op - 42 214

Divisio. Av 160 11 85

Op - 43 213

(A+P)tU, A*P+U, Av 160 4 92
or Bayes' Theorem Op - 26 23C

Conventional Av 160 10 86
probabilities Op - 189 67

aAnSa/ysi Av assign ambiguous aroswers to the strategy of using an available number or to ar

arithmetic operation strategy earlier )n the list); Analysis Op assigns them to the arithmetic
operation stiategy.
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available numbers would be in a different class from the rounded results of judgment processes.
However, it can not be unequivocally resolved in the present study.

In conclusion, there is much more support for Hypothesis I-a, which holds that subjects answer
using just one of the available numbers in the word problem, than for Hypothesis 1 -b, that they
combine the numbers using simple arithmetic operations. This conclusion holds even if we credit all
ambiguous answers to the more complicated arithmetic operations. However, the results are also
consistent with the notion that subjects may be using conventional probabilities (cf. Edwards, 1953)
to express a holistic intuitive judgment or the outcome of a process of integrating more than one
number. Note also that both hypotheses, using available numbers and using conventional
probabilities, are incomplete for they do not explain why the subject picks one number rather than
another.

4.5. Weighted average of Information.
Hypothesis 1 -e holds that the subject's answer may be produced through a weighted averaging

process. The 'averaging" concept means that all the available information is taken into account, to
some degree. The 'weight* concept specifies how much relative impact the different input
information has, and it is generally taken as a measure of the amount of attention paid to the
information, or its importance (Shanteau, 1980).

Weighted averaging has been represented in a variety of mathematical descriptive models (see
Hammond, McClelland, and Mumpower, 1980, for a review). There is controversy about whether
the averaging process that is embodied in the mathematical models is an accurate reflection of the
psychological process by which the judgments are produced, or on the other hand is merely a
description of the input/output relations. Hcffman (1960) expressed the position tMat the model can
tell us much of psychological interest about judgments made in an environment, e.g., the accuracy
of cue utilization, the relative weights or attention paid to cues, even if it does not describe the
psychological process (see also discussion by Einhorn, Kleinmuntz, and Kteinmuntz, 19- 9).
Hammond, on the other hand, argues that for intuitive cognition, at least, the process is indeed
some form of mental averaging (Hammond, 1980; Hammond, Hairm, Grassia, and Pearson, in
press; Hamm, in press; see also Smolensky, 1986).

The verbal protocol in Table 20 is an example of the kind of process to which the weighted
average model might be applied. The subject is first given a .25 base rate, and uses it as her
answer. The evidence (which if fully believed would lead to a probability of "1.0") causes her to
adjust the answer to .40. Given the reliability next, .70, she moves the answer to .60. This final
answer can be considered an average among the inputs. Although a protocol contains information
about the ,* -!' -" s orf~ red for th ir',e rs follow~i, -. , -i" ; ,r bf , tior " - A ,;ghted
average approach typically considers only the relation between the input and the output. Further, it
does not assume that the integration process heeds the norms nf probability. (However, Anderson
and S.-ianteau (1970) and Shanteau (1975) argue for a form of information integration, in the
evaluation of gamble.;, that potentially conforms with those rules.) The weighted averaging process
is distinct from the selection of one specific available number (Hypothesis 1-a) and from the
combination of information through precise arithmetic operations (Hypotheses 1 -b and 1-c).
However, a weighted averaging process is compatible with the use of conventional probabilities
(Hypothesis 1-d); the average is likely to be "rounded' to such a number (see Table 20).

Insert Table 20 about here.

To evaluate Hypothesis 1 -e, we must ask whether the process the suojects use in answering
p(H) on these word problems can be described as a weighted averaging process in either of two
senses -- as an anchoring and adjusting or updating process, or as a simultaneous information
integration We lack the data required for the usual methods of testing the weighted average
hypothesis by modeling judgments and evaluating the fit of the model: judgments about a large set
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Table 20. Transcript of pilot sibiect working on
a version of the Cab Problem.

Subject is given base rate of 25% blue cabs, and is asked, "With what you know now, what do
you think is the probability that a cab from the Blue Cab Company was the one involved in the
accident?"

"I'd say about a 25% chance.., because... there'd be 25 cabs for every 75 ot me green

ones."

Subject is told that the witness identified the cab as blue.

Um.... I'd probably make It higher, about 40, maybe because even though the percent of
cabs Is only 25%, ... If someone thought... It was blue, then they obviously probably asked
him If he thought It was green or blue and he said blue and It raised the percentage, but I still
don't think It would raise It that high, because It was at night. Green and blue Is hard to tell
[apart], because.., the viewing conditions were poor."

Subject is told that the witness's relability is 70% correct.

"Urn.... I'd raise the probability again since 70 Is a pretty high number, so I'd think that
it'd be, I'd probably make It a number between 40 and 70. Which would be about... 60...
between 60... I'd say about 60% chance that [It was a blue cabl."
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of word problems whose dimensions of input information vy s,ystematically. How',/er, some
ieatureb ,s' the weignted average models can be tested against our data. These features are:

1. Integration. More than one piece of information is taken into account.

2. Betweenness. As the response scale and the information scales are identical, a
"weighted average process" must produce an answer that is between the pieces of input
information.

3. Nearness. It follows from the "betweenness" assumptions that the relative weight the
subject places on a piece of input information will be reflected in the answer's nearness to
that input's value.

4. Universality of weights. The subject uses the same integration process, with the same
relative weights, when different subsets of the problem information are present. Hence,
the ratio of the weights on two pieces of information will be constant, no matter what other
information is present. Another way to think of this is that there will be no interactions
between types of information, a finding that has been generally true in past research (see
Hammond, McClelland, and Mumpower, 1980), with both novice and expert judges (but
see Ceci and Liker, 1986, for an exception).

We will test these features of the "weighted average model", as applied to probabilistic inference,
with our data.

4.5.1. The Integration condition.
The first testable condition is that more than one piece of information be taken into account. In

the previous section, it was shown that a large proportion of subjects' answers used numbers that
are available in the word problems. Although this seems inconsistent with a weighted averaging
model, it does not necessarily eliminate the weighted average hypothesis from consideration.
Intuitive integration processes, whether they involve simultaneous consideration of several pieces of
information, or a sequence of answers and adjustments, are vague and approximate; hence it is
quite possible that a subject will round off the answer provided by a weighted averaging process to
the nearest conventional probability. The conventional number to which the intuitive answer is
rounded may happen to be available in the problem. Cos~der the case in which one of two
available numbers is given much more weight than the other. The rounding process may lead the
subject to respond with this number itself. Next consider the case in which the subject has received
all three pieces of information (b, e, and r). Many subjects give the reliability r as the answer; yet
this number lies between b and e, and hence it might be the rounded result of an averaging
process. Hamm (1987) suggests a response selection mechanism in which rounding to "available"
numbers is more likely than rounding to "conventional probabilities". Admitting these considerations.
most subjcI6c ai, ,,rs are consisteri vah th .;ondition thli they use more than one piece of
information.

4.5.2. The betweenness condition.
If a subject is using a weighted averaging process, then the answer should be within the range

of available numbers. For example, if a baserate of .15 and evidence (p = 1.0) are available, if the
subject puts all weight on the base rate information the answer will be .15; if all weight is on the
evidence, the answer will be 1.0; any other weighting scheme will produce an answer in between
(unless rounded back to an endpoint). This is true when we consider the implicit .5, as well.

To test whether the subjects' answers are consistent with this condition, we assume that the
available numbers at a given step in the word problem are the implicit .5 prior probability, plus those
pieces of information that have been explicitly presented: e (= 1.0), b and/or r (which have different
values for each problem). Only if the subject uses a strategy other than a weighted average could
the answer be outside the range of available numbers. The data are largely consistent with this
condition. For example, for the no-information condition, the range of available numbers is just the
implicit .5. Any weighted averaging strategy would have to produce an answer of .5. For the b
condition, the range is from the base rate (.15 !or the Cab problem) to .5. For the br condition, the

3,
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Cab problem range is .15 , .60; and to, be it is .15 to 1.0. Table 2-1 preseols the number of
subjects whose answers were below, in, and above the range of available numbers, for each step of
each problem. Most of the answers (between 88% and 99%) fall in the range of available numbers,
at every step. Analogous analyses by Fischhoff and Bar-Hillel (1984) and Lichtenstein and
MacGregor (1984) showed similar results. While this is very consistent with the weighted average
hypothesis, it should be noted that the correct answers, the available numbers, and many
conventional probabilities also fall within these ranges. This finding therefore does not eliminate
hypotheses of alternative psychological processes.

.. * . •............. *t. .....

Insert Table 21 about here.

4.5.3. The nearness condition.
The idea that when a subject heavily weights a piece of probability information, the answer will

be near to it on the probability scale, follows from the assumption that people understand that the
input information and the response are on the same scale. Both the nearness condition and the
universality of weights condition must be met for our data to be consistent with the weighted
average hypothesis. Hence we can not rigorously test one without assuming the other. We will
assume nearness and test universality.

4.5.4. The universality of weights condition.
This condition requires that subjects consistently use the same weighting scheme over different

combinations of available types (dimensions) of information (cf. Bar Hillel's (1980) discussion of the
integration theory approach). To test this, we must identify possible patterns of weighting the
available information, and test whether the data support the hypothesis that any of them are applied
consistently, i.e., that the same relative weights are applied to any two kinds of information in
different contexts. Subjects might categorize and weight the input information according to the order
in which it is received (Hypothesis 1-e-i), or according to its content (Hypothesis 1-e-ii).

4.5.5. Tests of position dependent Information weighting patterns.
If Hypothesis 1 -e-i is true, then we should find a universal pattern of applying weights according

to the ordinal position of the information. The pattern might involve most weight on the earfier
information (primacy), uniform weights, or most weight on the later information (recency).

Some results show such a pattern. Consider subjects' answers when given e first and b second.
as compared with the be conrl4 tinn, where the identical information is presentpd in the reverse
order. The mean answer for the eb condition in the Cab problem is .79, compared with .67 for the
be condition (Table 6). The difference is significant (t(84) = 2.17, p = .033). The analogous
comparisons are .93 to .85 for the Doctor problem (t(82) = 1.71, p = .092) and .52 to .45 for the
Twins problem (t(84) = 1.17, p = .245). Since the e information (1.0) is at the upper extreme of the
input scale, this pattern indicates that the answers are nearer to the more recently given
information, i.e., that more weight is given to the most recent information.

A second example of weighting according to ordinal positioii occurs when all three pieces of
information are given. The b information is always the lowest, r intermediate, and e highest. Table
6, '3rd info" column, shows that the mean answers are lowest when b is given last, again indicating
that the ordinal position of the information influences the weight the subjects give it. For the Cab
problem, the mean of the erb and reb conditions is .63 (medians are .68 and .75, respectively) and
the mean of the remaining conditions is .69 (median - .80), t(254) = 1.96, p = .051. For the Doctor
problem, when b is last the mean answer is .67 (medians .70 and .75), compared with .81 (median
.90) in the other four conditions (t(257) = 4.78, p < .001). For the Twins problem, the difference
between the mean answer when b is presented last (.36) and when it is presented in an earlier
position (.43) is also significant (t(260) = 2.97, p - .003). This heavy weighting of recent information
is a factor that has influenced the results of previous studies on the Cab problem, in which it was
found that many subjects answer with the reliability, which is too high. The order of information in
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Table 21. Number of subjects whose answers fall

within range nf available numbers, at each step of each problem.

Number of Subjects

Below In Above

Range Range Range

Amount of
Information.

Problem.
N N % N

---------------------------

None
Cab 1 252 98.4% 3
Doctor 10 248 95.8% 1
Twin 2 260 99.2% 0

One piece
Cab 13 226 88.3% 1 7a

Doctor 10 240 92.7% 9
Twin 12 246 93.9% 4

Two pieces
Cab 22 231 90.2% 3&
Doctor 18 241 93.1% 0
Twin 18 241 92.0% 3

Three pieces

Cab 8 248 96.9% a
Doctor 17 241 93.1% -
Twin 10 252 96.2% -

aWhen the evidence information (e = 1.0) has been presented, it is not possible for subjects to

answer above the range. This is true for one third of subjects after 1 piece of information, for two
thirds after two pieces, and for all subjects after 3 pieces of information.
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those earlier studies was ber, in which the reliability is presented last. Changing information
presentation order in the word problems would decrease, though not eliminate, the bias of "ignoring
base rate". Bar-Hillel's (1980) generalization, "the median and modal responses were consistently
based on the indicator alone, demonstrating the robustness of the base-rate failacy", would need to
be modified in detail, if not in spirit.

These two findings are consistent with the notion that people use a weighted averaging
approach, weighting the information according to ordinal position. Because more weight is given to
recent than to early information, they counter the "insufficient adjustment" part of the anchoring and
adjustment or updating versions of the weighted averaging hypothesis: Hypothesis 1-e-i-2 is
eliminated.

Other comparisons, however, do not support the notion that people weight the available
information only according to the order in which it is received. When the r information is given first,
following the implicit .5, it is virtually ignored: subjects continue to answer ".5". But when the b or e
information is given first, the subjects move a substantial portion of the distance from .5 to the new
information (Table 6, "1 st info" column). This indicates that subjects do not universally pay more
attention to the most recent information.

The rb and br conditions support the same conclusion. Table 6, "2nd info" column, shows that
the means for these two conditions are nearly identical (p > .5 for both the Cab and Doctor
problems; t(83) = 1.82, p - .072 for the Twins problem, where rb elicited lower answers (.27) than
br (.34)), and much nearer to the base rate than to the reliability. This is consistent with a primacy
weighting pattern in the br condition, and a recency weighting pattern in the rb condition. Overall,
then, the results are not consistent with the universal use of a weighted average process that is
based on the ordinal position in which the information is received. Thus Hypotheses 1-e-i-l-a,
1-e-i-2, and 1-e-i-3 are rejected.

Hypothesis 1-e-i-l-b is a special case because it assumes the subject updates, i.e., integrates
the latest information with ii or her previous answer rather than with previous information.
However, the finding that the answers in conditions rb and br are almost identical, while the
answers in eb and be are different, is not consistent with this hypothesis.

Therefore we can reject all variants of Hypothesis 1-e-i. To say that people answer probabilistic
inference word problems using a weighted averaging process with a sequential information
weighting pattern does not adequately account for the data.

4.5.6. Tests of content dependent Infe-matlon ,,vcghtlng patterns.
The alternative possible basis for weighting information is according to the kind of information

(Hypothesis I-e-it). For example, subjects might give more weight to base rate information than to
reliability. If so, their answers in the br and rb conditions should be nearer to the base rate
information, no matter whether it is presented first or second. In fact, the mean answers are nearer
to base rate than reliability (Table 6, "2nd info" column, "bre" and "rbe" rows), which supports this
hypothesis.

But some results are not consistent with this hypothesis. First, consider the r, br, and rb
conditions. Here the reliability information receives very little weight (Table 6) and is seldom used
(Tables 10 and 11). But in the re and er conditions, as well as in all conditions with all three pieces
of information (Table 12), the modal answer is the reliability (except for the Twins problem with
three pieces of information). Thus the reliability information seems to be weighted differently in
different contexts, in violation of the universality of weights condition.

A second implication of the universality condition is that the ordinal relations between weights of
pairs of dimensions should be transitive. That is, if the weight on Dimension A is greater than the
weight on Dimension B in all situations in which information on the two dimensions is available, and
the weight on Dimension B is greater than the weight on Dimension C, then the weight on

4'
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Dimension A should be greater than the weight on Dimension C.

In order to test the transitivity of dimension weights, a measure of weight is needed. One can be
developed using the "nearness" assumption. The weighted averaging hypothesis holds that a
subject's answer on the probability scale is determined by averaging the input information, which is
presented or, the same scale. We can express the general weighted averaging model as follows:

R = w xX° + wIxXI + w2 XX2
wo + w' :- w2

where X- is the input information on dimension i, Xo is the initial impression, the implicit .5, and wi is
the weight on dimension i. (The inclusion of the initial information makes this a little complex, but we
will show later that the result of the analysis is the same whether or not this is included.) The
nearness condition says that the answer will be nearer to the information that is given more weight.
"Nearness" is the opposite of "distance", and so we can estimate the weights in this model, from a
single answer R (or the average of a group of subjects's answers on the same problem), by
measuring it as some form of complement of distance. 1 - IR - Xil is such a measure. Therefore the
model of how the answer is produced can be expressed as:

R= (I-JR-Xilxx i

X I-IR-Xil

and the weight on dimension k can be expressed as:

1 - IR - Xl

S1-1R-Xil

This expression can be used to measure the relative weights of the evidence, reliability, and base
rate dimensions in the conditions where only two of these three pieces of information have been
presented. When only the evidence and reliability have been presented (conditions er and re), the
mean answer for the Cab problem is .76 (the mean of the erb and reb rows, Table 6, "2nd info"
column). The estimate from the nearness model for the we;ght on reliability is .39 (see Table 22).
This is derived by substituting R = .76, Xo = .5, Xe = 1.0, and Xr = .80 into the nearness model,
above. The estimate for the weight on the evidence is .31. (The estimate for wo , the weight on the
.5, is .30). Thus wr > w e .

Insert Table 22 about here.

When only the reliability and the base rate have been presented (conditions rb and br), the
mean answer for the Cab problem is .31. The weight estimates from the nearness model are wb =
.39 > Wr - .24. Since wb > wr and wr > we, transitivity of relative weights predicts that wb will be
greater than we. However, when only the base rate and the evidence have been presented, the
mean answer is .73, and the weight estimates are we = .38 > wb = .22. Table 22 shows that this
intransitive pattern holds with several alternative formulations of the nearness model, as applied to
the Cab problem results. It holds whether or not the initial impression Xo is included. It holds when
the nearness measure is derived by subtracting the absolute distance from the range of available
information, (Infmax - Infnin), rather than from the full probability range of 1. The intransitivity is also
found with the Doctor problem, but not with the Twins problem. [One reason for this exception, as
we shp!l discuss in Section 4.8 below, is that people spontaneously know that twin identifications
are unreliable, and so the eb answers in the Twins problem are not really done 'without any r
information".]
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Table 22. Estimates for relative weights
of Base Rate, Evidence, and Reliability,
based on the "Nearness" Assumption.

Comparisons

Problem Analysis Base Rate Evidence Base Rate
and and and

Reliability Reliability Evidence

B R R z z B

Cab 1-1, no .5 .62 .38 .56 .44 .64 .36

1-1, .5 .39 .24 .39 .31 .38 .22

I=range, no .5 .75 .25 .64 .36 .68 .32

I=range, .5 .44 .14 .48 .27 .40 .18

Pattern B > R R > E E > B

Doctor 11, no .5 .71 .29 .53 .47 .71 .29

1=1, .5 .45 .18 .39 .35 .48 .19

I=range, no .5 .94 .06 .56 .44 .85 .15

I=range, .5 .56 .04 .49 .38 .58 .10

Pattern B > R R > Z E > B

Twins 1=1, no .5 .56 .44 .63 .37 .41 .59

1=1, .5 .37 .30 .39 .23 .22 .32

I=range, no .5 .72 .28 .87 .13 .36 .64

I=range, .5 .48 .18 .49 .07 .18 .32

Pattern B > R R > E z < B
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This intransitivity of relative weight is a failure of the universality of weight condition and hence a
disproof of the hypothesis that subjects consistently apply a weighted averaging process to the
information, according to the type of information. There is no possible universally applied weighted
averaging scheme on the reliability, base rate, and evidence information dimensions that could be
consistent with the intransitive pairwise weighting that has been observed here. This is true whether
or not the implicit .5 information is included in the model. Therefore, Hypotheses 1-e-ii-1 through
1-e-ii-4 are eliminated.

The finding that the universality of weights condition is not met has one of two implications. It
may be that subjects do not produce their answers to probabilistic inference word problems by
applying a weighted average process to the information. If so, all variants of Hypotheses 1-e should
be rejected. On the other hand, subjects may use a weighted averaging process, but the weightiig
scheme may not be universal, i.e., different relative weights may be applied to the information
dimensions in different contexts. Thus the weight placed on the base rate information, relative to the
evidence information, by the subject in Table 20 may change when the reliability information is
received. If this implication is correct, then a new question arises: what determines the weights in
the different situations? Bar-Hillel (1980) suggests that people use (weight) information that they
perceive as 'relevant7. She manipulated this relevance by changing elements within the full word
problem. Our results show that it subjects are indeed taking weighted averages, the weights depend
on which dimensions of information are present. Therefore the perceived relevance of one kind of
information may depend on the presence of other dimensions of information. Another possibility is a
response mode effect (see Wyer, 1976). Before evidence information has been given, subjects are
asked to respond with p(H); when evidence has been given, their responses are by definition
p(H/E). The base rate or prior probability, which has the form p(H), may be given more weight than
reliability before the evidence has been presented, when the response mode is p(H), which is
similar to it; while the reliability p(E/H) is given more weight than the base rate after the evidence is
available, when the response mode is p(H/E).

In searching for what might determine "relevance", we should not neglect the normative theory.
Consider the correct answers when one is faced with pairs of pieces of information (see Table 7,
'Two Pieces* column). If one has only the base rate and reliability information, the base rate is the
correct answer, so using neamess as a measure of weight, wb > wr. If one has the reliability and
the evidence, and assumes a prior probability of .5, the correct answer is the reliability, so wr > we.
If one has the evidence and the base rate, the correct answer can be anywhere between the base
rate and the evidence, depending on one's assumptions about the reliability. In most inference
communication situations, the presumption is that the reliability of evidence is fairly high (it it were
not, the communicator would be expected to say so; see Kahneman and Tversky, 1982), and so the
answer would be closer to the evidence (1.0) than to the base rate. With these reqc;n'~ble
assumptions, we > w b.Hence the intransitive pattern observed in our data is the same pattern that
would be seen if the subjects were sensitive to normative considerations. Although as we have
shown above the subjects are not universally using the normatively correct procedure to produce
their answers, they may well be using heuristic strategies that are broadly sensitive to these
normative considerations.

4.5.7. Other composition principles.
Hypothesis 1-f is that people combine the available information using organizing principles

based on multiplication of the information inputs, or more complicated organizing principles, rather
than averaging. There is little support for multiplying, because the answers are rarely below the
range of the available numbers (see Table 21), which would characterize the products of numbers
between 0 and 1. We will not analyze the more complicated organizing principles here, because our
data are not adequate to test them. The high use of available numbers, and the failure of the
simpler weighted averaging and multiplying hypotheses to account for the data, make it unlikely that
subjects use the more complicated composition principles.
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4.6. Simplifying and heuristic strategies.
The final set of hypotheses that we shall evaluate holds that people answer probabilistic

inference word problems by using heuristics, 'strategies of simplification that reduce the complexity
of judgment tasks, to make them tractable for the kind of mind that people happen to have"
(Kahneman, Slovic, and Tversky, 1982, p xii). In this view, any way of producing an answer can be
considered a "strategy", including selecting an available number, producing a weighted average of
inputs, and calculating Bayes' Theorem. A heuristic strategy is relatively simple, and can be
executed using humans' limited memory and coordination capacities. In this view, the heuristic
strategies of interest in probabilistic inference word problems are less complicated than the
mathematical operations of Bayes' Theorem.

The heuristic strategies theory is broad and powerful. The strategy concept includes both
intuitive (e.g., the use of weighted averages, or of conventional probabilities) and analytic (e.g., the
application of mathematical operations) processes (Hammond, Hamm, Grassia, and Pearson, in
press). The strategy used in a given situation may be newly invented, explicitly selected from a
repertoire (a decision process; see Christensen-Szalanski, 1978; 1980; Bursztajn and Hamm,
198'. or automatically applied (a quasi-perceptual process; see Tversky and Kahneman, 1982).
Any number of strategies might be applied to a given situation; different people may apply different
strategies; different people may apply the same strategies for different reasons; a person may apply
different strategies in different situations, or in the same situation at different times. Consequently it
is very difficult to disprove the general heuristic strategies theory, though specific candidates may
be rejected. However, some common features distinguish any heuristic strategy from the processes
considered under Hypothesis 1.

1. Contingency. Different strategies may be adopted in different situations, dep-nding on
aspects of the task situation. The implication for probabilistic inference word prc,',ms is
that there is no expectation that the same process will be used when different
combinations of information are available.

2. Accuracy. The very definition of heuristic strategy implies that over situations (if not in
each situation) accuracy will be better than random, yet less than perfect. This holds
whether the mechanisms for strategy invention and selection involve conscious
justification (Slovic, 1975) or trial and error (March, 1978). This implies that answers will
be more accurate than what would be expected i any one of the strategies were to be
applied in all situations.

3. Variation in accuracy. The accuracy of the outcome will depend on the task and the
strategy. The details of the task situation will determine the accuracy of the application of
the chosen strategy to the task. It should be noted that the features of task that influence
the adoption of strateay may or may not be related to The features of task that determine
its accuracy tl-obe, 1974). As a consequence, variation in accuracy between situations to
which the same strategy is applied may be expected.

To evaluate Hypothesis 2, we will seek evidence for these general features in the subjects'
responses. Out of the infinite set of possible strategies, we will focus our analysis on strategies that
have been named in the literature and/or that are easily identified in our data, which lack process
observations and repeated judgments.

4.6.1. Contingency In the neglect of Information.
An easy strategy for simplifying a situation is to ignore some of the available information. For

example, people answering probabilistic inference word problems have been characterized as
neglecting base rate, which means 'the base rate is either ignored or grossly underweighted"
(Tversky and Kahneman, 1982, p 153). When people use an available number as their answer, they
neglect the other information (unless, as discussed in Section 4.5.2 above, they round off to the
available number, or average two numbers that are on either side of it). In Section 4.4.1 above we
counted the number of people who used available numbers in each situation; here we will focus on
the neglected numbers in the same situations, and look for variations in the pattern of neglect
across situations.
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Subjects in this study used the base rate when it was the only information presented (see
discussion of Hypothesis 3-b, Section 4.3 above), and so we can reject Hypothesis 2-a, that they
universally neglect the base rate information. However, it is possible that people use the base rate
in some situations but neglect it in others. We may test whether the base rate information has an
influence in each situation by comparing the subjects' answers with it and without it, using within-
subject and between-subject t-tests. Within subjects, the difference between the answers before
and after the presentation of the b information can be tested (Table 23). Between subjects, the
answers of all subjects who have received a set of information without b can be compared with the
answers of all subjects who received the same information plus b (Table 24).

Insert Tables 23 and 24 about here.

The first row of Table 23 shows that for the Cab problem, subjects with no information answered
.50, and then when given base rate information (.15) their mean answer was .34. Therefore, when
the base rate is the only information available, it is not neglected. Tversky and Kahneman have
found a similar result (unpublished data from 1973, cited by Bar-Hillel, 1980). The second row
shows that when given base rate information following evidence, subjects' mean answer decreased
significantly from .85 to .67. In fact, for each of the five possible sil ations in the Cab problem in
which subjects received base rate information following a previous dnswer, the new answer was
significantly lower. This is true for all three problems.

Table 24 presents comparisons between subjects. The first row indicates that the mean answer
was .76 for subjects who were given evidence first and then reliability, compared with .69 for a
different group of subjects who were given baserate, evidence, and then reliability. The difference
is marginally significant (t(85) = 1.94, p - .055). Base rate information had a significant impact in
every comparison in the Twins problem.

The pattern for the Cab and Doctor problems is that whenever the base rate was the most
recently presented information, the mean answer was significantly lower (reflecting appropriate
attention to base rate) than the answer when base rate information was lacking, but if the base rate
was presented earlier, the difference is not significant (though p < .15 in seven of the 9 comparisons
in question, and p < .30 in the other two, all in the expected direction). This reflects the recency
effect discussed above. In conclusion, subjects do not generally ignore the base rate information.
But it is used more in some situations than in others. It had a highly statistically significant impact
on their answers when it was presented last and when presented along with only the reliability
information. However, its impact was not statistically significant in other situations, as revealed by
the comparisons er ver3u f b, , d ebr, re ... ,,, and rbe, and e versus be, I,, _,,! Cab and
Doctor problems. Because recency plays an important role in the use of base rate, one might
propose that this is a universally applied strategy that can account for the results. However, it was
shown in Section 4.5.5 above that recency does not influence the use of all information equally. A
hypothesis that recency governs the use of base rate information, but not of other information,
would in itself be a "contingent strategies" hypothesis. The neglect of base rate therefore seems to
be produced by strategies that are not applied universally.

Similar analyses were done to determine whether evidence and reliability information have an
impact in all situations. Evidence is not at all neglected, with significance levels of p < .001 in every
comparison (data not included). In some conditions reliability has a large effect, and in other
conditions it has no effect (Tables 25 and 26). For all problems, the mean answers for the er and re
conditions are significantly lower than for the • condition. This is true in both within subject and
between subject comparisons. On the other hand, the reliability informat;:n does not affect the
answer when it is presented alone (in the r condition; with the exception of the Doctor problem,
where the difference is due to a very few answers that are less than .5) or if it is presented in
conjunction with the base rate information (in the rb and br conditions; with the exception of the
Twins problem; see Section 4.8 below). Reference to Table 7 shows this lack of effect to be correct.
Finally, note that when reliability information is presented last (Table 25), the direction of change
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Table 23. Within-subjects comparisons
of the Impact of base rate information.

Cab Problem
Comparison
1st 2nd M(1st) M(2nd) T p N

0 b .50 .34 5.76 .000 84

* eb .85 .67 4.12 .000 42
r rb .49 .31 4.57 .000 45

er orb .76 .61 4.28 .000 43
re reb .75 .64 3.61 .001 42

(er) (er)b .75 .63 5.60 .000 85

----------------------------------------

Doctor Problem
Comparison
1st 2nd M(lst) M(2nd) T p N

0 b .48 .29 12.82 .000 88

e ob .95 .85 3.52 .001 43
r rb .51 .30 10.32 .000 43

er erb .88 .66 5.76 .000 43
re reb .86 .68 3.86 .000 42

(er) (er)b .87 .67 6.66 .000 85

Twins Problem.
Comparison
1st 2nd M(st) M(2nd) T p N

0 b .49 .26 14.05 .000 87

e ob .65 .45 6.65 .000 42
r rb .50 .27 8.69 .000 42

er erb .58 .34 8.69 .000 43
re reb .57 .37 7.52 .000 48
(er) (er)b .57 .36 11.42 .000 91
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Table 24. Between-subject comparisons of the impact
of basi rate Information.

Cab Problem.
Comparison

Ist 2nd M(Ist) M(2nd) T p NI N2

er ber .76 .69 1.94 .055 43 44
er ebr .76 .72 1.50 .137 43 42
re bre .75 .67 1.67 .100 42 40
re rbe .75 .67 1.68 .097 42 45

* eb .85 .67 3.24 .002 43 42
* be .85 .79 1.56 .122 85 44
r rb .53 .31 5.38 .000 42 45
r br .51 .30 7.09 .000 87 40

0 b .50 .34 8.01 .000 172 84

Doctor Problem
Comparison
Ist 2nd M(Ist) M(2nd) T p Ni K2

or ber .88 .84 1.53 .130 43 41
or ebr .88 .84 1.54 .128 44 43
re bre .86 .82 1.14 .258 42 47
re rbe .86 .75 2.40 .019 42 43

* ob .96 .85 2.87 .005 43 43
* be .96 .93 1.42 .157 86 41
r rb .53 .30 7.08 .000 42 43
r br .52 .29 7.71 .000 85 47

0 b .49 .29 18.48 .000 171 88

Twins Problem.
Comparison
Ist 2nd M(1st) M(2nd) T p N1 N2

or ber .58 .44 4.51 .000 43 44
or ebr .58 .46 3.49 .001 43 42
re bre .57 .45 3.03 .003 48 43
re rbe .57 .39 5.42 .000 48 42

e eb .65 .45 4.45 .000 43 42
be .65 .52 3.42 .001 85 44

r rb .49 .27 7.66 .000 48 42
r br .49 .34 7.64 .000 90 43

0 b .50 .26 19.02 .000 175 87

. ==-.=,.. ,,== = =,=. --,= m m • I In Bi i n.
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depends on whether evidence was presented first and base rate second (the char"ge is a slight
increase) or base rate was first and evidence second (the change is a significant decrease). This
interaction ma,, be attributed to two occurrences of the recency eflect. First, before the reliability is
presented, evidence and base rate have been presented in one of two orders. The answers tend to
be near to the most recently presented information. It happens that the mean answer in ,he eb
condition is below the reliability value (which is yet to be presented), but the mean answer in be is
near or above it (and hence many individuals' answers are above it). Second, when the reliability is
subsequently presented, the answers move :oward it: shifting up for the eb condition and down for
the be condition.

Insert Tables 25 and 26 about here.

In conclusion, there is evidence for variation in the degree to which the subjects' strategies
neglect base rate and reliability information in different situations. While the variation in the
utilization of base rate may be due to recency effects, the variation in the use of reiability is not, and
thus it is unequivocally an instance of the contingency that is characteristic of a heuristic strategies
account of people's answers to probabilistic inference word problems.

A second example of contingent strategy use is the utilization of available numbers. We showed
in the discussion of Hypothesis 1 that many subjects respond using numbers that are presented in
the word problem. Let us now ana;yze the selection of particular ava,.able numbers. Consider the
relative rate of use of the base rate and the reliability numbers, when both are available. Table 11
shows that when only reliability and base rate were available (conditions rb and br), many more
subjects used the base rate (Cab problem: 30 used base rate and 2 used reliability; Doctor: 61 to 2:
Twins: 46 to 2). Yet when evidence information was also available (Table 12), the selection shifted
(Cab problem: 12 subjects used base rate and 101 used reliability; Doctor: 7 to 155: Twins: 52 to
24). Though in both cases the strategy is a version of "select an available number, the tendency to
select reliabii;ty compared with base rate changed when the evidence information was added. This
is a clear instance of contingent strategy use.

4.6.2. Increased accuracy due to contingent strategy use.
In the previous example, the use of different strategies in dif'.,ent situations contributes to

subjects' accuracy. When only the base rate and reliability information are ava'lable, it is
appropriate to respond with the base rate, as most subjects do (see Table 7). When all three pieces
of information are available, neither extreme, base rate nor evidence, is the right answer; a subject
who recognizes this and is committed to using an available number would do better to select ore
that is in bvi,,u, n wo.. extremes. The reliability and the implicit .5 of the principle of insufficient
reason are the alternative candidates. Table 12 shows that the reliability was the modal response
after all three pieces of information had been presented in the Cab and Doctor problems, while .5
was the most frequent response in the Twins problem. These responses are relatively near to the
correct (Bayes' Theorem) answers for the Doctor problem (.75) and the Twins problem (.27), though
not for the Cab problem (.41).

A second example of increised accuracy due to contingent strategy use is the intransitive
weights applied to pairs of information dimensions, discussed above (Section 4.5.6). The same
intransitive pattern of relative weight was demonstrated to be characteristic of normative thinking
about these situations. This demonstrates contingent strategy use, and increased accuracy as a
consequence.

4.6.3. Variation In accuracy of the same strategy In different situations.
The third feature of a "heuristic strategies" explanation is that the accuracy of a strategy will vary

across situations. A general example may be seen in Tables 8 and 9: answers were less accurate
when the problem had more information, i.e., when the situation became more complex. The
biggest decrement is between two and three pieces of information, when the norm becomes Bayes'
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Table 25. Within-subject comparisons
of the impact of reliability information.

Cab Problem.
Comparison
Ist 2nd M(lst) M(2nd) T p N

eb ebr .67 .72 -1.13 .266 42
be ber .79 .69 2.84 .007 44

a er .85 .76 3.42 .001 43
b br .31 .30 0.37 .714 40

0 r .50 .51 -0.71 .482 87

Doctor Problem.
Comparison
1st 2nr M(lst) M(2nd) T p N

eb ebr .85 .84 .39 .697 43
be ber .93 .84 2.82 .007 41

a er .96 .88 6.16 .000 43
b br .30 .29 .38 .709 47

0 r .49 .52 -1.73 .088 85

Twins Problem.
Comparison
1st 2nd M(lst) M(2nd) T p N

eb ebr .45 .46 -0.23 .821 42
be ber .52 .44 2.31 .026 44

e er 65 .58 2.49 .017 43
b br .26 .34 -4.09 .000 43

0 r .49 .49 .45 .657 90
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Table 26. Between subjects comparisons of the
Impact of reliability information.

Cab Problem.
Comparison
1st 2nd M(lst) M(2nd) T p N1 N2

eb rob .67 .64 .40 .687 42 42
eb orb .67 .61 .94 .351 42 43
be rbe .79 .67 2.42 .018 44 45
be brs .79 .67 2.36 .021 44 40

a re .85 .75 3.45 .001 85 42
* er .85 .76 3.21 .002 42 43
b br .38 .30 1.40 .165 44 40
b rb .34 .31 .70 .486 84 45

0 r .50 .51 -0.91 .364 169 87

Doctor problem.
Comparison
Ist 2nd M(lst) M(2nd) T p Nl N2

eb reb .85 .68 3.17 .002 43 42
eb erb .85 .66 3.72 .000 43 43
be rbe .93 .75 3.61 .001 41 43
be bra .93 .82 2.72 .008 41 47

" re .96 .86 4.47 .000 86 42
" or .95 .88 3.92 .000 43 43
b br .27 .29 -0.66 .511 41 47
b rb .29 .30 -0.72 .472 88 43

0 r .49 .52 -2.33 .021 174 85

Twins problem.
Comparison
1st 2nd M(Ist) xt1ind) T p N1 N2

ob reb .45 .37 1.69 .094 42 48
eb erb .45 .34 2.26 .027 42 43
be rbo .52 .39 2.60 .011 44 42
be bre .52 .45 1.24 .219 44 43

" re .65 .57 2.82 .005 85 48
" or .65 .58 2.42 .018 42 43
b br .26 .34 -2.06 .042 44 43
b rb .26 .27 -0.38 .702 87 42

0 r .50 .49 .73 .469 172 90
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Theorem. It could be that subjects use strategies that cope quite well when the problem is relatively
simple, but are inadequate when it becomes more complicated. Thus, despite the observation in
the previous section that strategies vary when there are two pieces of information and the answer is
consequently more accurate, still the general pattern seems to be that the strategies do not change
enough in response to task changes.

A specific example of a heuristic strategy which works in some situations, not in others, is the
strategy of interpreting reliability p(E/H) to mean the same thing as p(H/E) (Hypothesis 2-b-iii). The
hypothesis that errors in probabilistic inference are produced by such a confusion has been put
forth as an explanation of the poor performance on probabilistic inference word problems when all
three pieces of information are present (Eddy, 1982; Dawes, 1986; Wyer, 1976). The common use
of reliability as a response when all three pieces of information are present (see Table 12) can be
attributed to the use of this heuristic strategy -- people think that the p(E':-) information is exactly
what the question is asking them for. Note, however, that reliability is also the most common
response when only the evidence and reliability information are available (Table 11; conditions er
and re). We noted in Tables 8 and 9, above, that these answers are right. However, this may be by
accident. It just happens that in the er and reconditions, p(H/E), calculated with Bayes' Theorem
assuming a prior probability of .5, yields an answer equal to the reliability, p(E/H) (see Niiniluoto,
1981), and so the heuristic of using p(E/H) for p(H/E) produces an exactly correct answer. [This
would not be the case if sensitivity, p(H/E), were different from specificity, p(-H/-E), in these
problems.] The conditions for applying this heuristic are that both evidence and reliability
information be present. Without the evidence E, reliability as p(E/H) would not be perceived as
pertinent (see the no information, r, and (br) conditions), and the required response would be
perceived as p(H) rather than as p(H/E), 3nd so no confusion would be pc sible.

This last example is notable because the same heuristic is used when there are two pieces of
information, as when there are three, and it is equally "confused" or "inappropriate" in both cases.
However, the answer happens to be right when there are two pieces of information, with no credit
due to the subject's understanding, while it is very wrong (in the Cab and Twins problems) when
there are three pieces of information.

Il will be helpful at this stage to adopt a more formal representation of a contingent strategies
explanation. We shall model it as a production system in the style of an OPS5 program (Bruwnston.
Farrell, Kant, and Martin, 1985), in which subjects' behavior in various situations is controlled by a
collection of rules or "productions" which are used when appropriate. Each rule consists of two
parts, conditions and actions. The conditions are compared with the situation, as represented in
working memory. If the conditions in a rule match the situation, then the rule's acion are taken.
For example, one production for the present case is:

If
I have been asked to answer p(H)
I have base rate information

Then
Answer p(H) - base rate.

This rule would be selected in cases where base rate information is present, and result in the base
rate being given as the answer.

What would happen it the subject had both base rate and evidence information? In addition to

tlhe first production, another production, such as

If
I have been asked to answer p(H)
I have base rate information
I have evidence

Then
Answer p(H) - 1.0

would match this situation. When two rules match, which one should take action? This is decided by
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a process called "conflict resolution*, in which one of the matching rules is selected for application,
on the basis of conflict resolution principles. One of these principles is that the production whose
conditions are most specific is selected. Hence, the second production would be used, and the
answer would be 1.0.

Table 27 shows the conditions and actions of three sets of productions. The first set represents
normative behavior. It will produce the correct answer in every situation of our study. The second
set of productions represents the typical subject on the Cab and Doctor problems, while the third set
captures the typical answer on the Twins problem. These will produce the most popular answers in
every condition. Note that rules A, B, and H are the same in all three sets. For rules C and E, the
conditions are the same but the actions are different. The special rules for the typical subject on the
Cab and Doctor problems are called C', D', and E'. The typical Twins problem subject uses C", D",
E', and F". Rules F and G appear only in the normative set. Thus, the production system
representing normative reasoning in probabilistic inference word problems has rules A through H;
the production system representing the typical Cab and Doctor problem subject has rules A, B, C',
D', E', and H, and the typical Twins problem subject production system has rules A, B., C", D", E',
F", and H1. Other rule sets could be used to model nontypical subjects.

Insert Table 27 about here.

Consider first the set of normative strategies. Rule A provides for a response of estimating
baserate information if one is asked for p(H) but has no pertinent information. This rule will match
every situation; however, only when there is no baserate b nor evidence e information available will
it be selected (Table 28), due to the specificity principle. The actual estimating is done by rule H,
which produces a value for b -- .5. The conditions for Rule B are then met, and it produces an
answer equal to b, which is .5. Rule B is used when there is baserate information, without evidence
and with or without reliability. Rule C will fire (be matched and then selected) when only evidence
information is available. Its action is to call for estimates of both reliability and baserate information.
(Note that the production system would still produce the right answer if only one of these, say
"estimate r" were called for.) In the present system, the only thing that can be done in response to
a request for an estimate of base rate or reliability is to make a subjective judgment. This is
embodied in productions G and H, which "guess" about reliability and baserate, respectively. A
reasonable judgment about baserate or prior probability, in the absence of specific base rate
information and prior knowledge, is the .5 of the principle of insufficient reason. A guess about
reliability will depend on what the subject believes about the reliability typical of evidence in such
situations. There is no normatively prescribed answer for this, and therefore the specification in the
set of n'--" tive pr, '- ' n must allov, ' ,'-gment based o'; o -. ,cts own knowledge
about the content area of the word problem.

Insert Table 28 about here.

Rule D is applied when there is information about the baserate and evidence, and Rule E is
applied when there is information about reliability and evidence. Finally, with information about all
three pieces of information, rule F is executed. Its action produces an answer by calculating Bayes'
Theorem. This normative set of productions embodies a contingent strategies theory, because
different actions are done in different situations. However, because the actions are the best possible
according to our normative standards, we would not call this a model of a heuristic strategies
theory; there is no deviation from the best response.

'This suggests a multdimensional definition of "simplic"y in cogniton. not only can one rule be simpler than anothe, but
a small set of rules can be considered simpler than a large set.
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Table 27.
Production systems representing the normative response strategy

and the most common response strategy.

Condition Action

Normative Typical subjects

Cab and Doctor Twins
Rule Problems Problem

A Nulla estimate b estimate b estimate b

B b b b b

C * estimate r e estimate b
estimate b

D b and . estimate r 0 b

* a and r estimate b r r

F a, r, and b Apply Bayes' _b.5
Theorem

G Query: estimate r Make best guess
no r info adopt r = best

guess

H Query: estimate b adopt b = .5 adopt b = .5 adopt b = .5
no b info

a1n addition to the conditions listed, each production has the condition "Query for p(H)'.

b- indicates that there is no rule in the Typical Subject production system corresponding to the
rule in the normative production system.

5,14
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Table 28.
Sequence of production application for normative

and typical subject production systems.

Normative Typical Subjects
................................................................

Cab and Doctor Twins
Problems Problem

Given Right Rule Moat co-mon Rule Most conanon Rule
Info. Answer Sequence Answer Sequence Answer Sequence

0 .S ARB .5 AHB .5 AHB

* .5 to a CGERF or e C, .5 C''
CHDGF

r .5 AHB .5 ARE .5 ARB

b b B b B b B

(er) r EHF r E' r E'

(eb) b to e DGF e D' b D''

(rb) b B b B b B

(erb) BT F r E' .5 E''

-5
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The second and third sets of productions, representing the contingent strategy use of the typical
subject on each problem (see Column 1 of Table 6, Column 1 of Table 9, and Tables 10, 11, and
12), can be considered to embody a heuristic strategies theory because their answers are not
correct in all situations. Rules A, B, and H are the sama as for the normative production set. Rules
C and C" will substitute for rule C, rules D and D" for D, and rule E' will substitute for rules E and F
in the Cab and Doctor problem production systems, and rules E' and F' will substitute for them in
the Twins problem production system. Rule C' provides that the response 1.0, indicating complete
acceptance of the evidence, will occur whenever the evidence is given, unless the reliability is also
given, in which case Rule E' applies and the response will be r.

Note that the only estimates made by the typical Cab and Doctor problem subject are of the
prior probability when neither the b nor the e information has been given (in the Null and r
conditions). In contrast, the typical Twins problem subject estimates b in the e condition, and the
normative strategy additionally involves estimates of r in the e and (be) conditions, and estimates of
b in the e and (er) conditions. This estimating or searching behavior is something that can be
looked for in the verbal protocols or process traces of experts who presumably use better strategies
than novices. This theory specifies the conditions under which such behavior can be expected.

The production system formalization of the typical subject's strategies (actions) and the rules
which cause them to be used in the various situations in this study (conditions) allows us to address
in a specific manner a general issue concerning people's performance on probabilistic inference
word problems. The issue is whether the poor performance on probabilistic inference word
problems is due to a process in which base rate information is neglected (e.g., Tversky and
Kahneman, 1982; Bar-Hillel, 1980) or to a process in which reliability information is misunderstood
(e.g., Dawes, 1986; Eddy, 1982; Wyer, 1976). The issue is important because of its implications for
how to aid people to make better inferences. For instance, Fischhoff and Bar-Hillel (1984) have
explored methods of calling attention to the base rate information, which make more sense in the
context of a process of neglecting base rate than in one of misunderstanding reliability.

The above production system model, which exactly produces the typical subject's responses,
attributes the error to a dual process. The driving factor is that the reliability is misunderstood.
Specifically, the subject thinks it to be the information that he or she is asked to produce. The
second factor is that, in the context of the misinterpretation of the reliability information as the target
information, the base rate information no longer seems relevant, for the answer is already in hand.
in this account, the neglect of base rate information happens not because of an erroneous process
of assessing the relevance of information, a process which wrongly decides that the bae rate is less
relevant than p(E/H). Rather, the neglect occurs because of a reasonable assessment that the base
rate information is - s' nt than the "p(H/E)". The error is in a confused interpretation of the
p(E/H) reliabiitty information as p(H/E).

The typical subject's response in the (ber) and (er) conditions of the Cab and Doctor problems,
guided by rule E', is the reliability, which the subject thinks is the appropriate answer because of a
confusion between p(E/H) and p(H/E). This misunderstanding is general. That is, there are no rules
in which the typical subject has the opportunity to confuse the reliability intormation but does not do
so. Although some of the rules in the production system are compatible with a correct
understanding of the reliability information, none of the rules requires that the subject distinguish
successfully between the two conditionals. Rule B, applied in the (rb) conditions, would produce
the same (correct) answer if the subject confuses p(E/H) with p(H/E). Because there is no evidence
information E, neither p(E/H) nor p(H/E) would be relevant here. Similarly, Rule A, applied in the r
condition, would produce the correct answer whether or not the reliability information is confused.

The reliability concept plays a special role in conditions e and (eb), for the subjects are not
given reliability information here. Normatively, their answers can be anywhere between the 1.0 of
complete acceptance of the evidence and neglect of the base rate, and the .5 or b of complete
acceptance of the base rate and neglect of the evidence. Their exact answer depends on the
reliability that they attribute to the evidence. No reliability information is given; no mention of
reliability or unreliability has been made (though 2/3 of the subjects had just answered another word
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problem which used reliability concepts, and the subjects bring to the Twins problem the knowledge
that identification of twins is unreliable). What reliabilities do the subjects spontaneously assume?
This can be estimated by turning Bayes's Theorem inside out, that is, by solving for it (Table 29).
For example, the mean answer for p(H/E) in the Cabs problem, be condition, is .79. We can solve
for p(E/H)2, yielding .96 as an estimate of the reliability assumed by the mean subject. This is not to
say that the subjects are inverting Bayes' Theorem in their heads; that is implausible given that they
can not apply it straight. But the estimates produced by this procedure have two valid uses. First,
whether the subjects know it or not, these are the reliabilities that they are assuming; if they do not
think these are right then they should adopt another strategy for answering the p(H/E) question.
Second, meaningful comparisons can be made between the estimated reliabilities for different
problems. The modal responses for the Cab and Doctor problems in Table 29 indicates that in the
absence of specific reliability information, the subject assumes the evidence is completely reliable.
On the other hand, in the Twins problem subjects assume that the evidence is fairly unreliable. In
the absence of specific reliability information, the modal estimate is that the evidence is completely
unreliable. This comparison between the Cab and Doctor problems, in which subjects assume high
reliability in the absence of specific reliability information, and the Twins problem in which low
reliability is assumed, serves as a bases for explaining problem differences (Section 4.8.1 below).

Insert Table 29 about here.

In conclusion, the production system representing the typical subject's response is consistent
with two important processes a fundamental misunderstanding of reliability information every time it
is presented, and a neglect of base rate information when it is present in the context of the
misunderstood reliability information. Further, when the reliability information is not presented, most
subjects in the Cab and Doctor problems acted as if they did not think about the possibility that the
evidence might be unreliable. (In the Twins problem, however, they did think of reliability when it
had not yet been presented.) Nowhere in this production system is there a rule that embodies a
misunderstanding of the presented base rate or a lack of appreciation of the concept of base rate
when specific information about it was lacking. Rather, the neglect of base rate information is
produced by the firing of rules which embody the misunderstanding of the reliability information.
Given the misreading of p(E/H) as p(H/E), the neglect of base rate may well be appropriate. This
interpretation is consistent with Tversky and Kahneman's (1982) and Bar-Hillel's (1980) general
account, which holds that people do not know how to integrate statistical (base rate) information
with single case (evidence) information. Even if some or all of these subjects understand the
differ6nt meanings of p(E/H) and p(H/E), they do not know how to integrate all their information
virn Ravp-t Theorem. This account differs from Tversky, Kahneman, and Bar-Hillel's account in
V;,. ;,.iporL.... e a,,,e. t mu c.x,,sioii , p(E/H) and p(H/E).

A previous study by Christensen-Szalanski and Beach (1982) is consistent with this theory.
Student subjects were given "experience' by being exposed to 100 cards, each representing a
medical case that either had or did not have a disease, before being given a word problem
analogous to those used here. In one condition the cards had information only about whether the
patients had the disease, and hence they conveyed base rate information. This experience made
no difference in the students' accuracy on the word problem -- they still neglected the base rate and

2Let p -p(KI- ), b- p(H), r. p(E ), and p(E/-H) I -p(I). Bayes'Theorem is

(lb)(-rP = b,, + (1-b~il .)"

Solve for r as follows:
2pbr + p - pb - pr = br

2pbr - br - pr = pb - p

pb-P
2pb-b-p

57
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Table 29. Implicit reliabilities of subjects
in various conditions In which reliability information was not given.

Problem and Answer Base Implicit
condition p (H/E) rate reliability

Cab e Mean .85 .50a .85
Median .90 .50 .90
Mode 1.00 .50 1.00

be Mean .79 .15 .96
Median .90 .15 .98
Mode 1.00 .15 1.00

eb Mean .67 .15 .92
Median .80 .15 .96
Mode 1.00 .15 1.00

Doctor a Mean .96 .50a .96
Median 1.00 .50 1.00
Mode 1.00 .50 1.00

be Mean .93 .25 .98
Median 1.00 .25 1.00
Mode 1.00 .25 1.00

eb Mean .85 .25 .94
Median .99 .25 .997
Mode 1.00 .25 1.00

Twins 0 Mean .65 .50 a  .65
Median .69 .50 .69
Mode .50 .50 .50

be Mean .52 .20 .81
Median .50 .20 .80
Mode .20 .20 .50

eb Mean .45 .20 .77
Median .45 .20 .77
Mode .20 .20 .50

aWhen base rate information is not given, b -. .5 is assumed.
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used reliability as their answer. In another condition, the case information included both the true
disease and the test result (positive or negative). Thus the subjects experienced not only the base
rate but also the reliability. The accuracy of the students in this condition was substantially improved
by this experience, in part because fewer of them mistakenly used the reliability as the response. It
was therefore the experience of the reliability, and not the experience of the base rate, that enabled
these subjects to answer the probabilistic inference word problem more accurately. Similarly, the
most successful attempt to train people to do better on probabilistic inference word problems has
involved display of the 2 by 2 table relating evidence (E and -E) to hypotheses (H and -H), which
expresses both p(EH) and p(H/E) (Lichtenstein and MacGregor, 1984).

How can the theory that errors in probabilistic inference are due mainly to confusion in the
interpretation of reliability information be reconciled with previous findings that changes in the
distribution of answers can be produced (and the rate of neglect of base rate decreased) by
manipulating the perceived relevance of the base rate information (Bar-Hillel, 1980; Fischhoff and
Bar-Hillel, 1984)? I acknowledge that not all subjects use heuristic strategies as represented in the
typical subject production systems. Other subjects may use weighted averaging strategies in which
weights on the dimensions of information can be influenced by manipulations of perceived
relevance. And even within the heuristic strategies approach, some subjects may not confuse
p(h/E) with p(E/H). Their strategies for combining the statistical and case information may well be
responsive to factors that show the base rate to be relevant.

4.6.4. Conclusions concerning heuristic strategies.
This study has found strong support for Hypothesis 2-c, which holds that subjects have a

number of different strategies and select different ones in different situations. The heuristic
strategies explanation captures some general features of the behavior of the average subject: the
use of different ways of combining information in different situations; the fact that these changes
tend to parallel the changes demanded by normative considerations; and the variation in accuracy
when the same strategy is followed in different situations.

In addition, there is support for Hypothesis 2-b-ill, the "confusion hypothesis", that subjects
interpret the reliability p(EIH) as if it were p(H/E). This not only explains the modal answers in the
conditions where all three pieces of information are given, it is also consistent with their behavior
when less information is present. Paradoxically, the most appropriate use of the reliability concept
seems to have occurred when no specific reliability information was presented. Here subjects used
their general knowledge concerning the reliability of evidence and they did not deviate far from the
range of correct answers, though they were perhaps a little optimistic about the quality of the
evidence in the Cab and Doctor problems, and a little pessimistic in the Twins problem.

4.7. Summary of the tests of the hypotheses.
We have shown that Hypothesis 3, that people's answers on probabilistic inference word

problems are produced by processes that are variants of Bayes' Theorem, simply does not account
for the data. Hypotheses 1-a, 1-b, 1-c, and 1-d together describe a large proportion of the answers;
however, the most successful of these, Hypotheses 1-a (use of an available number) and 1-d (use
of a conventional probability), are very broad, and hence are also consistent with weighted
averaging (Hypothesis 1 -e) and with the use of heuristic strategies (Hypothesis 2). A weakness of
Hypotheses I-a and 1-d is that they do not offer a basis for predicting which available number or
conventional probability will be selected. Weighted average and heuristic strategies explanations
can do so.

In evaluating the weighted average hypothesis (1-e), we discov- 'hat there was no possible
pattern of weights that could account for the results in the conditions ',ere only two dimensions of
information were presented. It would therefore be necessary to speak of different patterns of
weights being used in different situations. This contingency is one of the characteristics of the
heuristic strategies explanation (Hypothesis 2), which is a more general hypothesis than weighted
averaging, for it covers many forms of strategy (including the selection of available numbers, and
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weighted averaging). Overall, the heuristic strategies account (Hypothesis 2) explains the data more
successfully than Hypotheses I or 3. As embodied in a production system representing the typical
subject, the heuristic strategies theory exactly predicted the modal subject's selection of available
numbers, while the weighted averaging explanation, in order to be compatible with the modal
answers, would have had to resort excessively to the notion of "rounding off". Further, when the
heuristic strategies approach was modeled explicitly it strongly suggested that the primary source of
errors in probabilistic inference word problems is in the subjects' misunderstanding of reliability
information. It also makes predictions about situations in which search may be expected from
expert subjects. In conclusion, the heuristic strategies approach offers both the most accurate
explanation of the results and the account that provides the largest number of new insights into the
phenomenon and the most ideas for future research.

4.8. Incidental Results.
This section presents results pertaining to issues distinct from the evaluation of the hypotheses

in Section 2.2: differences between the problems, subject stability between problems, subject
factors that may influence accuracy, and the accuracy of the subject's most likely guess.

4.8.1. Differences between problems.
It has been noted several times above that the results on the Twins problem differ from those on

the Cab and Doctor problems. This may be attributed to two causes. First, due to an error in
producing the problems, a number of the Twins problems had sequences of paragraphs that did not
present a coherent narrative. Second, subjects have prior knowledge about the unreliability of
identification of identical twins.

The effects of the Incoherent narrative. 221 subjects received versions of the Twins problem
in which the narrative was cnherent when the paragraphs were presented in the order baserate.
evidence, reliability, but when presented in different orders there were references in early
paragraphs to events that were not specifically mentioned until later paragraphs. Although these
events are all well understood within a "babysitter" frame, this incoherence might affect subjects'
responses. The questionnaire was corrected, and 41 subjects (11 in the reb information
presentation order, and 6 in each of the other orders; all with the Twins problem presented first)
were given the coherent version. The mean responses of the two groups are presented in Table 30.
The answers for three of the six information presentation order conditions, following three pieces of
information, are different by an amount greater than or equal to .10 (bre, erb, and rbe). T-tests of
the differences between incoherent and coherent versions, for all conditions, are presented in Table
31. A few of the differences were significant. Several people with the coherent version gave
answers loss than .5 in the r condition; in the br and bre conditions (which involve the same
subjects), the mean answers were lower for the subjects with the coherent version. For this reason,
all the above analyses reliid primarily on the results of the Cab and Doctor problems. A further
concern is whether following the ircoherent version of the Twins problem affected the answers on
the other problems. Comparisons of the means were made and no significant differences were
found.

Insert Tables 30 and 31 about here.

Problem differences due to prior knowledge of the reliability. The three problems differ in
the extent to which the typical subject knows that the evidence is unreliable. Everyone knows that it
is hard to tell twins apart. On the other hand, most people blindly trust medical technology and do
not spontaneously wonder about the reliability of medical tests. The knowledge of unreliability of
evidence in the Cabs problem can be expected to be intermediate (see the evidence paragraphs of
the Twins, Cab, and Doctor problems in Tables 5, 3, and 4). This prior knowledge of unreliability
can be expected to make a difference in the responses in those conditions where evidence is
presented without reliabilty information. Table 32 shows the effect of getting the evidence

60D



Diagnostic Inference. August 11, 1987
Robert M. Hamm, University of Colorado.

Table 30. Mean responses on Twins problem,
Incoherent and Coherent Versions,

for each Information Presentation Order Condition.

Incoherent version. N = 221.

Cond-
ition

None One Two Three N
ber .49 .26 .50 .43 38
bre .50 .27 .36 .48 37
ebr .50 .65 .47 .47 36
erb .50 .65 .57 .33 37
rbe .50 .50 .26 .40 36
reb .50 .50 .59 .39 37

Coherent version. N = 41.

None One Two Three N
ber .50 .31 .61 .46 6
bre .50 .19 .18 .26 6
ebr .50 .68 .32 .39 6
erb .50 .63 .61 .43 6
rbe .50 .50 .35 .28 6
reb .45 .43 .51 .31 11

t)1



Diagnostic Inference. August 11, 1987
Robert M. Hamm, University of Colorado.

Table 31. T-Tests of differeices between means of each condition,

Coherent and Incoherent Versions of Twin Problem.

Version

Inco- Coher-
herent ent

Cond-
ition
-------------..------------------------

Mean N Mean N t p
----...........-----------------------

0 .50 221 .49 41 1.34 .181
b .26 75 .25 12 .30 .766
• .65 73 .65 12 -.12 .904
r .50 73 .45 17 2.63 .010*

(be) .49 74 .46 12 .33 .744
(br) .31 73 .26 12 .96 .342
(er) .58 74 .54 17 .91 .364
be .50 38 .61 6 -.84 .406
ber .43 38 .46 6 -.36 .722
br .36 37 .18 6 2.83 .007*
bre .48 37 .26 6 2.36 .023*
eb .47 36 .32 6 1.53 .135
ebr .47 36 .39 6 .96 .340

er .57 37 .61 6 -.65 .522
erb .33 37 .43 6 -1.08 .286
rb .26 36 .35 6 -1.22 .228
rbe .40 36 .28 6 1.62 .113
re .59 37 .51 11 1.54 .132
reb .39 37 .31 11 1.31 .197

- - - - - - - - - - -- - - - - - - - -
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information under these conditions; e is compared with the ' )-information condition, and be is
compared with the b condition, for each problem. The data for the incoherent and coherent
versions of the Twins problem are shown separately. The effect of the evidence when that
information is presented first in the Doctor problem is a difference of .47, the mean answer shifting
from .49 to .96. The analogous effect is .35 in the Cab problem, and .15 in the Twins problem. This
agrees perfectly with the prediction that there would be least expectation of evidence unreliability in
the Doctor problem, and most in the Twins problem. The pattern is identical when evidence is given
following base rate information. There seems to be little effect of the incoherent versus conerent
version of the Twins problem in this.

Insert Table 32 about here.
.......... * * ..t......................

General comparisons. Inspection of Tables 10, 11, and 12 shows that there are major
differences in the distribution of answers over available numbers, between the Twins problem and
the other two. For example, Table 13 shows that 40% of the Cab problem answers and 60% of the
Doctor problem answers after three pieces of information use reliability as a response, while only
9% of the Twins problem answers do. Table 12 shows that subjects use the base rate and .5
instead. Although there is a significant effect of the incoherent version of the Twins problem, it is
relatively minor and is not sufficient to account for these differences. The prior knowledge of the
unreliability of identifications of twits seems to be the cause. Note that not only does this knowledge
influence the use of evidence before reliability information is presented (Table 32), but it also seems
to make people distrust the evidence and the base rate throughout the problem.

4.8.2. Subject stability over problems.
The attempt to identify subjects' strategies is based on the assumption that subjects use the

same strategies on different problems. Without such stability of strategy, little prediction would be
possible. (However, see Hamm (1987) for a theory of probabilistic answer selection or strategy
use.) Therefore it is of interest whether subjects in this study meet this assumption -- do they use
the same strategy on different problems?

Because of the counterbalancing of orders of information presentation, ih is not meaningful to
test the stability of subjects' strategies after one or two pieces of information. Only after three pieces
of information will the subjcts be solving the same problem. Four analyses will be made:
correlations of answers between problems, correlations of accuracy between problems, and
seeking evidence of the use of a strategy that produces the same class of answer on pairs of
problems, defining "class of answer' at two levels of detail.

Correlations of answers between problems. If a subject consistently uses strategies thit
produce high or low answers, relative to the answers of other subjects, then there should be a
positive correlation between subjects' answers on different problems. The correlations for the
answers after three pieces of information are as follows:

Doctor Twin
Cab .07 .04
Doctor -.03

These small and nonsignificant correlations provide little evidence for consistent use of strategies
that produce high or low answers.

Correlations of accuracy between problems. If a subject consistently uses a stratcgy that
produces a relatively accurate or inaccurate answer, then there should be correlations between the
accuracy index (the absolute value of the deviation from the correct answer) between problems.
The correlations between the accu;acies of the answers after three pieces of information are as
follows:

Cab Doc
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Table 32. Comparison between problems of the effect of
evidence in the absence of reliability information.

Evidence alone.

Problem Condition

No inf 0 T p N Effect

Doctor .49 .96 -41.84 .000 86 .47
Cabs .50 .85 -18.65 .000 85 .35

Twins Nonsens .50 .65 -7.68 .000 73 .15
Twins No Nons .50 .65 -4.96 .000 12 .15

Evidence following base rate.

Problem Condition

b be T p N Effect

Doctor .27 .93 -22.66 .000 41 .66
Cabs .38 .79 -8.70 .000 44 .41

Twins Nonsens .26 .50 -5.81 .000 38 .24
Twins No Nons .31 .61 -2.24 .075 6 .30
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Doc -. 01
Twn -. 01 -. 02

Evidently there is little consistency in the accuracy of subject's responses. A separate index of
accuracy ir volves determining whether the subject's choice of hypothesis would be right if forced to
choose (sea Section --- below). We assume that subjects would choose the hypothesis favored,
i.e., if p(H) mere greater than .5, choose H, and if p(H) were less than .5, choose -H, with random
choice if p(H) were equal to .5. The answers after three pieces of information can be rescaled in this
way. For the Cab problem and the Twins problem, the correct answer is -H; for the Doctor problem,
the correct answer is H. Hypothetical forced choice answers are scored as 1 if correct, 0 if incorrect,
and .5 if the original answer was .5 and forced choice would have been random. Correlations
between these estimates of accuracy, for the three problems, are:

Cab Doc
Doc -. 06
Twn .11* -.03

There is a significant, by tiny, relation between the accuracy of their imputed guesses on the Cab
and Twins problems. As a general conclusion, analysis of accuracy reveals little evidence for
subjects' stability of strategy use across problems.

Answers In the same answer class: detailed classification scheme. The next analyses
assign subjects' answers to a classification scheme and test whether the subject's answer falls into
the same category on two different problems. An example of a category is "the use of the reliability
number from the problem". Presumably, if the subject uses the reliability number on two problems, it
would be due to using the same strategy on both problems. This assumption is weaker when the
category is a range, such as "numbers greater than the reliability but less than 1.0".

The first categorization scheme (top of Tables 33, 34, and 35) is complex. It used more than 16
categories, but only those on which at least one subject used the category on at least one of the two
problems are listed in the tables. The first category is the use of the base rate number as the
response. One subject used base rate on both the Cab and the Doctor problems. The expectation
is calculated using the row and column marginals (divided by the total) in a 16 by 16 table, which
presents the number of subjects who used each possible combination of categories on the two
problems. The named categories in Tables 33 to 35 are the diagonals ;rom such tables. Categories
are either exact numbers (such as the complement of the base rate, the last answer, or the prior,
which is the subject's answer when no information had been presented, usually .5), or ranges of
answers (such as all number that are less than both the base rate and the prior). A Chi-squared
test of the number of subjects falling on the diagonal in this table is conducted. These are the
subjects who used the same category in this scheme. This test shows that a significant number of
subjects used the same category on the Cab and Doctor problems, but that there was no such
stability between either of these and the Twins problem. Although the test is statistically significant
for the Cab and Doctor problems, the 79 subjects who used the same class of answer on both
problems is only a small proportion of the 265 subjects, very close to the 60.7 who would be
expected to have done so by chance.

Insert Tables 33, 34, and 35 about here.

Answers In the same answer class: simple classlflcatlon scheme. The analogous analysis
was done with a less complex classification scheme (lower table in Tables 33, 34, and 35). The
scheme used only the baserate, .5, the reliability, and 1.0, plus the intervals between them. Note
that this will inflate the estimated stability, because people whose answers on two problems fell in
the same interval will be counted as using the same strategy, even if different strategies that
produce similar answers were used. However, there may be some connection between answers
that fall into the same interval. For example, if subjects are using the same strategies but rounding,
estimating, or using weighted averaging processes, their stability would be lost in the more detailed

6:
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Table 33. Strategy Stability Analysis.
Comparison between Cab and Doctor Problems.

Complex categorization scheme.
Expected Observed

Category number number

base rt, ign evidence .3 1
basert * reliability .1 2
comp (br) * reliability .1 2
within +/- .05 of ST .0 0
compl(last answer) .0 0
between pr & BT .3 0
compl(reliability) .0 0
evidence, ign baserate .1 0
last answer .1 0
ans < nrior & basert .1 0
stuck with .5 .3 2
reliability 59.1 71
reliab < ans < evidenc .2 1
prior (other than .5) .0 0

all the above cats 60.7 79 chi-squared = 5.71
other categories 204.3 186 p = .025

Simple categorization scheme.

Expected Observed
Category number number

< baserate .9 3
baserate .3 1
br to .5 .6 1
.5 .3 2
.5 to rel 11 2 17
reliability 59.4 71
rel to 1 .4 1
certainty, 1 .1 0

above cats 73.2 96 Chi-squared 8.39
other cats 177.8 155 p < .005
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Table 34. Strategy Stability Analysis.

Comparison between Cab and Twins Problems.

Complex categorization scheme.

Expected Observed
Category number number

base rt, ign evidence 2.4 2
basert * reliability .1 0
comp(br) * reliability .0 0
within +/- .05 of BT .0 0
compl(last answer) .0 0
compl (reliability) .2 0
evidence, ign baserate .0 0
between prior and ST .1 0
last answer .3 0
ans < prior & basert .1 1
stuck with .5 2.1 4
prior < ans < reliab .7 0
prior * reliability .6 0
reliability 9.1 14
reliab < ans < avid 1.0 2
prior (other than .5) .0 0

all the above cats 16.7 23 Chi-squared is NS
other categories 248.3 242

Simple categorization scheme.

Expected Observed
Category number number

< baserate .4 2
baserate 2.4 2
br to BT .7 5
BT to .5 1.5 3
.5 2.1 4
.5 to rel 1.0 1
reliability 9.5 14
rel to 1 2.5 3
certainty, 1 .3 0

above cats 20.4 34 Chi-squared = 5.83
other cats 233.6 220 p < .025
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Table 35. Strategy Stability Analysis.
Comparison between Doctor and Twins Problems.

Complex categorization scheme.

Expected Observed
Category number number

base rt, ign evidence 1.4 1
basert * reliability .0 0
comp(br) * reliability .0 1
within +/- .05 of BT .0 1
compl(last answer) .0 0
compl(reliability) .4 0
between prior & BT .5 1
evidence, ign baserate .0 0
last answer .1 0
ans < prior & basert .3 0
stuck with .5 1.7 2
reliability 14.0 14
reliab < ans < evidence .2 0
prior (other than .5) .0 0

all the above cats 18.6 20 Chi-squared is NS
other categories 246.4 245

Simple categorization scheme.

Expected Observed

Category number number

< baserate .6 0
baserate 1.4 1
br to .5 2.3 3
.5 1.7 2
,5 to rel .7 1
reliability 14.4 14
91 to 1 .2 0

certainty, 1 .0 0

above cats 21.3 21
other cats 235.7 236 Chi-squared is NS.
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categorization scheme. The results show evidence of strategy stability between the Cab and
Doctor problems, and between the Cab and Twins problems, but not between the Doctor and Twins
problems.

In conclusion, the evidence is not strong that subjects use the same strategy (i.e., one that
produces exactly the same kind of answer) on different problems. Although there is statistically
more use of the same category of response than chance, still only a small minority of subjects show
this stability.

4.8.3. Subject factors that Influence accuracy and strategy choice.
Are there any features of subjects that influence how accurately they respond to probabilistic

inference word problems? One candidate is the amount of experience subjects have with the
content of the word problem. Subjects were asked to rate their experience with each of the selen
problems on the questionnaire. A normalized or relative rating for each subject is constructe.' by
dividing the rating for each problem by the total experience the subject reported for all problems.
The correlation between these experience ratings and accuracy (1 - absolute deviation of subject
answer from correct answer) after three pieces of information, for each problem, is:

Score
Cabs Doctor Twins

Raw
Experience -.07 -.03 -.09

p .118 .320 .073

Relative
Experience -.11" -.04 -. 8 "

p .041 .281 .002

For each problem, it was found that the more experience one had had with the content of the
problem, the less accurate one's answer was. This is statistically significant for the Cabs and Twins
problems, when the relative experience score is used. This result, though surprising, is related to
the finding that higher 1.0. subjects neglect the base rate more than lower 1.0. subjects do (Maya
Bar-Hillel, personal communication).

Other information we have about subjects includes their year in college, the amount of time they
took to complete the total questionnaire (seven problems), which is presumed to reflect the time
they spent on each problem, and the number of semesters they have taken of collegE .. athematics
and college statistics. The range cn the last two was quite low, with the mode at 0 semesters. The
correlations between these factors and accuracy of response at each amount of information, for
each problem, is shown in Table 36. Only three of the correlations (out of 60) are significant, each
concerning the Doctor problem. Recause accuracy is measured as I - absolute deviation, a
negative correlation indicates that the more of the factor, the less accurate the answer. Thus, the
students who were taking introductory psychology later than their freshman year, and those who
took more time on the questionnaire, gave less accurate answers after one piece of information on
the Doctor problem, and those who took longer gave more accurate answers after all three pieces
of information on the Doctor problem. Thirty four of the correlations in the table are negative, 26
positive. There seems to be little relation between subject factors and accuracy, in the range of
variation of these college student subjects.

Insert Table 36 about here.

Investigation o, whether subject factors influence strategy choice will be carried out when
subjects with mathematical training or with experience in the field of the word problem have
responded to analogous word problems.
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Table 36. Correlations between Accuracy (absolute deviation)
and various subject variables.

Exp w/ Year in Time on Sema col Sems col
Problem college questnr math stats

Cab 0 -.10 -.02 -.03 .00 -.02
1 .04 -.01 .01 -.11 -.03
2 .02 .02 -.09 -.09 -.07
3 .07 .10 -.08 .05 .00

Doc 0 .10 .05 .06 -.03 -.04
1 -.04 -.15* -.15* -.10 -.08
2 -.04 -.01 -.05 -.06 -.07
3 .03 .00 .19** .01 .00

Twin 0 -.08 .04 -.C2 .06 -.02
1 -.05 .07 .00 .03 .1d
2 .10 -.04 -.13 -.12 -.08
3 .09 .01 -.10 -.08 -.08

Table 37. Mean probability that subjects' guesses
would be correct If forced to choose.

p(correct) if chose in accord
Amount of information with Sayes' Theorem answer

1 N 2 N 3 N prob Dif #3 P(diab) Dif #3

Cab .593 174 .742 170 .447 256 .59 .143 .41 .037
Doctor .607 175 .788 175 .681 259 .75 .069 .25 .431
Twin .619 179 .634 176 .591 262 .73 .139 .27 .321
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4.8.4. Accuracy of forced choice.
If someone were forced to choose one of the two hypotheses, they would (in the absence of

principles of "innocent until proven guilty") probably select the answer that they already favor, that
i, they would choose H if p(H) were greater than .5, -H if p(H) were less than .5. and they would
cnoose randomly if p(H) = .5 (but compare Slovic, 1975). This would be consistent with a principle
of going with 'the preponderance of the evidence".

Given the subject's answer p(H), it is possible to calculate the probability that the subject's
choice would be correct (see Table 37). For example, with the Cab problem, at one piece of
information, if the information is the base rate .15, then the probability that "blue* is right is .15. If the
person gave an answer of p(H) greater than .5, they would be correct (according the the best
information available) only .15 of the time; if less than .5, they would be right .85 of the time; and if
equal to .5, they would be right .50 of the time. Those cases where the answer is indeterminate
were excluded (e.g., if given base rate and evidence; see Table 7) from the mean. This happened
with one out of three conditions when there was one piece of information (e), and with two out of six
conditions when there were two pieces of information (be or eb).

Insert Table 37 about here.

The left half of Table 37 shows that the mean probability of being correct after one piece of
information on the Cab problem is .593 (N = 174); the mean probability is .742 after 2 pieces of
information, but falls to .447 after 3 pieces. The right half of Table 37 shows the probability of being
correct after 3 pieces of information if one had calculated Bayes' Theorem. this is .59 for the Cab
problem, compared with a probability of .41 if the subject were "diabolical", that is, trying to be
wrong. The mean of thd subjects' probabilities, .447, is distressing close to the worst they could do.
This is not so for the other problems. For the Doctor problem, where the Bayes' Theorem answer is
on the same side of .5 as is the evidence rather than the base rate (because the evidence is of such
high reliability), the probability that the average subject would be correct is only 7% lower than the
probability that the best subject would be; and it is .43 above the probability of the diabolic,
purposefully wrong subject. In the Twins problem, where the Bayes' Theorem answer is on the
opposite side of .5 from the evidence, the pattern is similar: the mean subject's probability of being
right is .14 below the best subject's, and .32 above the worst subject's.

It is helpful to recognize ihat there are only a few possible probabilities a subject could have
here: .5, the same probability as the ideal subject, and the complement of the ideal subject's. Tale
38 shows the number of subjects whose imputed chances would give them each probability of
selecting the correct hypothesis. There are five probabilities in the Two Pieces of Information
condition because, although subjects can have only three possible probabilities, the high and low in
the two conditions are different.

.... . tI............... ............t

Insert Table 38 about here.

When there was only one piece of information it was the reliability for half the subjects, and
most of them answered .5. This accounts for the approximately 50% of subjects who had a .5
chance of choosing the correct hypothesis. Besides these (and the others who guessed .5), many
more people guessed in the right direction than the wrong direction on each problem (nearly 4 to 1
on the Cab problem, 13 to 1 on the Doctor problem, and 18 to 1 on the twins problem).

When there were two pieces of information, there were two ways subjects might make the
worse choice, depending on whether they were in the (br) condition or the (er) condition.
[Remember that (be) subjects are excluded from this analysis because the true probability is
indeterminate.] In the (br) condition, subjects would have the base rate chance of being right if they
guessed high (opposite the base rate). In the (er) condition, would have the rPliability chance of
being right if they selected H, and the complement of the reliability chance of beii ,. right it they
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Table 38.

Number and proportion of subjects having each possible probability
of being correct for each problem, each amount of Information.

Problem

Cab Doctor Twins
Value N Prop Value N Prz Value N Prop

Amt One .15 18 .103 .25 6 .034 .20 4 .022
of .50 92 .529 .50 88 .503 .50 100 .559
Info .85 64 .368 ..5 81 .463 .80 75 .419

Two .15 13 .076 .10 1 .004 .20 6 .034
.20 4 .024 .25 6 .034 .40 8 .045
.50 8 .047 .50 8 .046 .50 37 .210
.80 78 .459 .75 78 .446 .60 57 .324
.85 67 .394 .90 82 .469 .80 68 .386

Three .41 198 .773 .25 32 .124 .27 51 .195
.50 10 .039 .50 8 .031 ,50 56 .214
.59 48 .188 .75 219 .846 .73 155 .592

72



Diagnostic Inference. August 11, 1987
Robert M. Hamm, University of Colorado.

guessed low (opposite the evidence). With the cab problem, 4.7% sat on the fence and 85.3%
guessed right, leaving only 10% to guess wrong. With the doctor problem, 91.5% guessed right,
4.6% sat on the fence, and 3.8% got it wrong. With the twins problem, 71% guessed right, 21% sat
on the fence, and 7.9% guessed wrong.

With all three pieces of information, if subjects guessed low (on the Cab and Twins problems) or
high (on the Doctor problem) they were on the same side as the Bayes' Theorem answer, and
hence they had the high probability of being right. The result on the Cabs problem is notable: 18.8%
of subjects would have guessed right, 3.9% would have had a .5 chance of being right, and 77.3%
would have made the wrong choice and had the lower probability of being right. This lower
probability is only 18% lower than the higher probability available if one guesses right (an example
of the principle that the harder the decision, the less it matters). In the Doctor problem, 84.6% of the
subjects would have made the better choice if forced. In the Twins problem, 59.2% would have
make the better choice.

The Cabs problems seems special, in that its base rate was low enough, and reliability low
enough, so that subjects' answers were on the wrong side of .5, and hence they would probably
make the wrong choice if forced.

5. Discussion.
The present project has intensive" analyzed the responses of college student subjects on

probabilistic inference word problems. The understanding we derive here is useful for knowing what
kind of performance can be expected from people on these types of problems and how they can be
trained or aided to do better. Cohen (1981) argued that people's performance on word problems
(concerning the effect of sample size on variability of result) is of little import because naive subjects
can not be expected to know technical statistical laws. Tversky's (1981) reply is relevant here: "This
argument misses a major point about psychological research. 01 course, naive subjects are not
expected to formulate or prove laws of statistics or geometry. However, the psychologist is very
interested in whether naive subjects have learned from lifelong experience that nonrepresentative
results are more frequent in small than large samples" (p 355). Similarly, with probabilistic inference
word problems we can not expect that naive subjects understand Bayes' Theorem and are able to
apply it to the word problem. But it is of interest whether lifelong experienc" has taught them that
statistical information (base rate) can be combined with case information (evidence), whether they
know how to adjust a prior degree of belief appropriately given unreliable evidence, and whether
they can distinguish the implications of two conditional probabilities, the probability that a particular
type of evidence would be observed given that a hypothesis were true, and the probability that a
hynth!c;is would be true given that particular evidence were to be observed.

5.1. Significant findings.
This project studied the probabilistic inference word problems intensively by requiring subjects

to respond before and after each of the pertinent pieces of information: the base rate, the evidence,
and the reliability of the evidence. Because the information was presented in different orders to
different subjects, answers to eight possible combinations of information and 16 possible
presentation orders were observed. This enabled the testing oi a number of general hypotheses
concerning naive subjects' responses end accuracy on these problems. Given previous
Jemonstrations that mathematically sophisticated subjects (see Tversky and Kahnemin, 1971) and
subjects expert in the content area of ftie problems (':ddy, 1982) make errors on word problems,
models of naive subject behavior may well be very pertinent to expert behavior.

A notable result is that subjects paid attention to base rate information. When it was presented
without case evidence, subjects relied on it heavily, as is appropriate. When it was presented along
with evidence information, subjects paid attention to it, although on the average they accorded it
insufficient weight (speaking non-technically) and many subjects ignored it completely. This
supports Tversky and Kahneman's (1982) and Bar-Hillel's (1980) accounts of people's performance
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on the full problem as a "neglect' of base rate, yet shows that people do understand the base rate
information, and consider it pertinent to the question, contra Cohen (1981).

To a great extent, people responded using numbers that were directly or indirectly available in
the presentation of the word problem. Although these available numbers were often appropriate
responses for the problem when one or two pieces of information were available, the tendency to
respond using available numbers continued into the situation where all three pieces of information
were available and the appropriate response was not an available number. In contrast to the
frequent response with available numbers, it was fairly infrequent that subjects applied
mathematical operations to available numbers to produce their responses.

A result that is of only minor theoretical interest but has practical import for some situations is
that subjects gave more weight to the most recently presented information, either when selecting an
answer from the numbers available, or in combining the numbers into an answer.

The major theoretical result of this study is its support for a contingent strategies theory, which
holds that people apply different response strategies in different situations. The hypothesis that they
combine the information using the same weighted averaging policy in all conditions was rejected. If
they use intuitive weighted averaging policies, they use different weights when faced with different
combinations of types of information. But the frequent use of the available numbers suggests that
the response is not produced through intuitive averaging but rather through the application of rules
prescribing the selectior of available numbers. The contingent strategies expression of Ohis insight
holds that different rules .,r selecting available numbers will be applied in different situations. This
theory was modeled as a production system program with six productions, or rules specifying that
particular actions be taken in particular situations. This model exactly predicted the most frequent
response in every situation (every combination of information) for the Cab and Doctor problems,
and a variant with seven rules predicted the modal responses for the Twins problem.

Inspection of the rules in the production system model, and their conditions of application,
showed that there was no rule that involved a misunderstanding of the base rate information.
Rather, if base rate was ignored it was because other rules had already been applied and produced
an answer without considering it. This is consistent with Bar-Hillel's (1980) notion that information is
used in producing an answer on these problems when t is *relevant", and that this relevance
depends on the situation. Inspection of the rules that tended to dominate, i.e., to be applied before
those rules that incorporate the base rate information, showed that they were consistent with a
confusion between reliability p(E/H) and the posterior probability p(H/E). That is, these rules would
have been more appropriate had their input been p(H/E). Therefore the misunderstanding of the
reliability information seems to be an important factor in the neglect of base rate.

On the other hand, even if subjects had understood the reliability correctly, there is no rule in the
production system that would have allowed them to produce the correct answer with all three pieces
of information. Thus, even if we were to train naive subjects to correctly interpret p(E/H), this would
only remove a block to correct performance, by removing a reason for ignoring base rate
information; it would not provide a method for correct performance, or even approximately correct
performance. Ongoing study of the strategies that mathematics experts and substantive experts
apply to probabilistic inference word problems may fill this gap.

These results show that on probabilistic inference word problems, people have difficulty
applying their lifelong experience so that they can integrate statistical (base rate) with case
(evidence) information. The confusion between the two conditionals, p(H/E) and p(E/H), as
expressed in the problems, seems to be an important cause of this difficulty.

Another contributing factor may be the conventions of communication. People expect to be
given the information they need to solve puzzles. Experience in educational contexts that use word
problems has taught us that we will be given problems that we are expected to be able to solve
using the information at hand and principles that we have recently been taught; if no principles have
been taught, then all ihe information that is needed can be found in the problem (Fischhoff and
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Bar-Hillel, 1984). And there is no penalty for guessing. A further aspect of the education game is
that teachers may expect students to fail on a new type of problem, to provide motivation for the
next lesson. These considerations suggest that the tendency to say that the probability a hypothesis
is true is one of the numbers available in the situation may occur only in probabilistic inference word
problems, not in real world situations that require probabilistic inference. In my ongoing and
planned work, the word problems are being presented in ways designed to break up this
hypothesized mental set:

1. Subjects are asked to think aloud about the problem.

2. Subjects are given probabilistic information in one code (numerical probabilities or verbal
probabilities) and asked to respond using the other code, to prevent the easy use of a
response available in the word problem.

3. Subjects are given the opportunity to select the information that they would like to have,
and to explain the reasons for their selections.

5.2. Implications of the neglect of base rates In word problems.
It has been shown that people do not successfully integrate base rate probabilities and

probabilistic descriptions of the reliability of the available evidence when solving probabilistic
inference word problems. How should this affect our understanding of the prospects for improving
human rationality through the use of probabilities as measures of the degree of belief in
propositions? Four positions may be identified: the results may be irrelevant, we should improve the
way that information is presented in the situation, we should help people make better inferences, or
we should train people to increase their statistical understanding.

The results are Irrelevant. This position holds that, because word problems are not realistic,
they tell us nothing significant about human rationality. People may well be rational in their lives yet
fail to get the right answers on word problems (Christensen-Szalanski and Bushyhead, 1981;
Cohen, 1981). By this argument, the research on probabilistic inference word problems has nothing
to tell us about improving human rationality.

ft is incorrect to argue that the findings of word problem research on probabilistic inference are
irrelevant. There are some real world situations very analogous to these word problems (e.g., when
a physician is consulted about another physician's patient, he or she spends a few minutes listening
to a verbal description; Dawes, 1986); further, the same neglect of base rate observed in the Cab
problem has been seen in medical textbooks (Eddy, 1982) and in physicians' answers to word
problems (Cascells, Shoenberger, and Grayboys, 1978).

A second reason that the demonstrated neglect of base rate may be considered irrelevant has
to do with our finding that subjects are "on the right side of .5", that is, it the subjects were forced to
choose which hypothesis to bet on, they would usually pick the one which is more probable, by the
normative calculations. Even in the Cab problem, where people would choose the less likely
hypothesis, the difference in the probability of being right (.41 if choose wrong, .59 it choose right) is
small. However, there are a number of situations in this world ii which the exact probability is
important because one must do more than just "pick the best bet". One disease may be more
serious than another, and the choice of therapy may depend on probability estimates. The
automated radar defense system on the U.S.S. Stark in the Persian Gulf was programmed to
translate evidence into action in a way that was insensitive to the prior probability of an attack. to
prevent embarassing false alarms, the system was routinely shut off when no attack was expected.
And it was shut off when the ship was hit by an Iraqi missile. Whether or not the responsible
officer's judgment that no attack was expected was correct, it is clear 'hat the system would work
better in practice if it were capable of taking judged prior probabilities into account, and if the people
who use it understood the base rate concept and could use it property. It is also clear that the
responsible officers court martial and trial by press would be more fair if the judges and the public
understood the concepts of base rate and reliability of evidence well enough to apply it to this "word
problem".
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Focus on the situation. In this view, if we know the factors that make the base rate seem
relevant to someone. we can construct important inference situations in such a way that available
information about base rate will be used appropriately.

However, focussing only on situations is not practical. We do not control the presentation of
information in all important probabilistic inference situations. Were the principles of relevance widely
known, it is as likely that situations would be constructed to mislead people (as can occur, for
example, in the selling of insurance) as to help them reason correctly.

Focus on tools and aids. The advocates of decision aiding hold that it is not realistic to expect
people to be able to do complicated mathematics, such as Bayes' Theorem, in their heads, if they
lack training or intellectua! tools such as formulas and calculators (von Winterleldt and Edwards,
1986). The author recently sat in on an undergraduate statistics lecture in which Bayes' Theorem
was taught, and tried to solve two problems in his head before the lecturer worked them through.
While he succeeded (within .02), the intensity of the required mental effort surprised him. In a word
problem where people are not given the opportunity to look up the formula or use calculators, the
implicit message is "we do not really expect you to get this right"; even statisticians get the message
and fail on the Cab problem (see Bar-Hillel, 1980). By this view, the way to assure human
rationality would be to make the intellectual tools available and train people to use them, or to have
decision analysts available to help them, just as in historical eras when most people were illiterate
scribes could be hired to write for people.

Although it may be possible to aid those who repeatedly are confronted with socially important
probabilistic inference problems, by providing them with (a) appropriate intellectual tools that they
are trained to use, (b) decision analysts, or (c) decision support systems, this is not a practical
universal solution to the irrational mental strategies revealed by the word problems.

Focus on people's statistical understanding. By this view, people who are either trained with
statistics, or expert in the area of the word problem, tend to use more statistical concepts, more
accurately, in answering probabilistic inference word problems (Nisbett, Krantz, Jepson, and Kunda.
1983). Rather than changing the situation to increase the perceived relevance of the information
that should be used, statistical training could increase the subject's ability to discern the relevent
information (see Meehl and Rosen, 1955; Widiger et al, 1984); mere 'mechanical manipulations"
are not enough (Fischhoff and Bar-Hillel, 1984). Lichtenstein and MacGregor (1984) have explored
various methods for training people to do well on probabilistic inference word problems, and found
that those methods that both provide intellectual tools (such as the 2 by 2 table of evidence any
hypothesis possibilities) and explain why these work, helped best.

Enhancing people's understanding of the pertinent statistical concepts and how they apply in
the particular situations seems to be the most general approach to improving people's ability to be
rational through the use of probability measures of degree of belief. Its effects would be felt in many
situations, not only in those where the presentation of information was specially controlled, or the
problem solver had special tools or helpers available.

In order to improve intuitive reasoning, it is helpful to describe unaided reasoning, for this is the
base upon which impro ,ements must be laid. The present work has identified the role of the
confusion between (EIH) and p(H/E) as a block to successful integration of statistical and case
infnrmation, and has shown that people use strategies contingent on the types of information
presented. These findings will be useful to the project of improving probabilistic inferences.
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